

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

Railway + Airport

CIVIL ENGINEERING

Date of Test: 20/02/2025

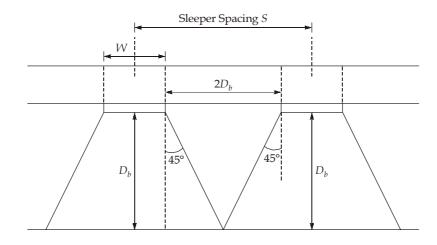
ANSWER KEY >

1.	(d)	7.	(d)	13.	(b)	19.	(d)	25.	(a)
2.	(b)	8.	(b)	14.	(a)	20.	(d)	26.	(b)
3.	(c)	9.	(d)	15.	(a)	21.	(b)	27.	(a)
4.	(b)	10.	(c)	16.	(a)	22.	(c)	28.	(c)
5.	(b)	11.	(a)	17.	(a)	23.	(a)	29.	(c)
6.	(b)	12.	(b)	18.	(d)	24.	(c)	30.	(c)

DETAILED EXPLANATIONS

1. (d)

Radius of exit taxiway,
$$R = \frac{V^2}{125 f} = \frac{80^2}{125 \times 0.15} = 341.33 \approx 342 \text{ m}$$


- 2. (b)
- 3. (c)

$$w = \frac{13(B+L)^2}{R} = \frac{13(6+0.05)^2}{250}$$
$$= 1.903 \text{ m}$$

- 4. (b)
- 5. (b)

Flat footed rails	Bull headed rails			
More strength and stiff	Less strength and stiffness for same weight			
Fastenings are lesser and cheaper	Fastenings are more and costly so initial cost is high			
Less maintenance cost	More maintenance cost			

- 6. (b)
- 7. (d)
- 8. (b)
- 9. (d)

From figure,

$$S = 2 D_b + W$$

$$D_b = \frac{S - W}{2} = \frac{65 - 25}{2} = 20 \text{ cm}$$

- 10. (c)
- 11. (a)

= 0.0024 = 0.24%

12. (b)

Grade resistance + Curve resistance = Gradient resistance

$$\Rightarrow \qquad \text{W } \tan \theta + 0.04\% \times 4 \times \text{W} = \frac{W}{200}$$

$$\Rightarrow W \tan \theta + 0.0004 \times 4^{\circ} \times W = \frac{W}{200}$$

$$\Rightarrow \tan \theta = \frac{1}{200} - 0.0004 \times 4$$
$$= 3.4 \times 10^{-3} = \frac{1}{294}$$

13. (b)

$$R = 250 \text{ m}$$

$$e = 20 \text{ cm}$$

$$V_{max} = 58.84 \text{ kmph}$$

:. Length of transition curve =
$$\max \begin{cases} 7.2e = 7.2 \times 20 = 144 \text{ m} \\ 0.073(e)V_{\text{max}} = 0.073 \times 20 \times 58.84 = 85.91 \text{ m} \end{cases}$$

= 144 m

14. (a)

Length of track,
$$l = (D-G)N + G(4N - \sqrt{1+N^2})$$
Given,
$$N = 15 , D = 7.5 \text{m}, G = 1.676 \text{ m}$$

$$l = (7.5 - 1.676) \times 15 + 1.676 (4 \times 15 - \sqrt{1+15^2})$$

$$= 87.36 + 75.36 = 162.73 \text{ m}$$

The length of straight distance

$$= l - 4 GN = 162.73 - 4 \times 1.676 \times 15 = 62.17 m$$

15. (a)

Type of airport Maximum rate of change of longitudinal gradient
A and B 0.1% per 30 m length
C type 0.2% per 30 m length

D and E type 0.4% per 30 m length

16. (a)

Hauling capacity =
$$\mu WN$$

W = Load on each driving axle

 \Rightarrow $W = 10 \times 2 = 20 \text{ tonnes}$

N =Number of axles

 \Rightarrow N = 3

 \therefore Hauling capacity = $0.3 \times 20 \times 3 = 18$ tonnes

17. (a)

Crossing number, N = 12

Gauge, G = 1.676 m

Outer radius, $R_0 = 1.5 G + 2 GN^2$

 $R_0 = 1.5 \times 1.676 + 2 \times 1.676 \times 12^2 = 485.2 \text{ m}$

Central radius, $R = R_0 - \frac{G}{2} = 485.2 - \frac{1.676}{2} = 484.4 \text{ m}$

18. (d)

Correction for elevation = 7% per 300 m

$$=\frac{7}{100} \times 1920 \times \frac{275}{300} = 123.2 \text{ m}$$

Corrected length = 1920 + 123.2 = 2043.2 m

- 19. (d)
- 20. (d)
- 21. (b)
- 22. (c)

Hauling capacity = $\mu n w_d$

$$= 0.2 \times 3 \times 20 = 12 \text{ tonnes}$$

For train moving on straight and level track,

Hauling capacity = Total train resistance

Total train resistance = $R_{T1} + R_{T2} + R_{T3} + R_{g}$

 $(:: R_{Q} = W + \tan\theta = 0)$

 R_{T1} = resistance independent of speed = 0.0016w

 R_{T2} = resistance dependent of speed = 0.00008wv = $(0.00008 \times 100)w$ = 0.008w

 R_{T3} = atmospheric resistance = $0.0000006wv^2$ = $(0.0000006 \times 100^2)w = 0.006w$

 \therefore 12 = 0.0016w + 0.008w + 0.006w

 \Rightarrow 12 = 0.0156w

 \Rightarrow $w = 769.23 \text{ tonnes} \simeq 769 \text{ tonnes}$

23. (a)

Radius of broad gauge curve,

$$R = \frac{1146}{3} = 382 \text{ m}$$

Adopt

$$e_{\rm eq} = 0.165 \text{ m}$$

$$e_{\text{th}} = e_{\text{eq}} + \text{CD} = 16.5 + 7.6 = 24.1 \text{ cm}$$

$$\therefore 24.1 = \frac{1.676 \times V_m^2}{127 \times 382} \times 100$$

$$\Rightarrow$$
 $V_{\rm m} = 83.52 \, \text{kmph}$

24. (c)

> V_{avg} = Weighted average of given movement of trains Since,

$$\Rightarrow V_{\text{avg}} = \frac{5(60) + 8(80) + 12(90) + 6(110)}{5 + 8 + 12 + 6} = 86.45 \text{ kmph}$$

Now,
$$e_{th} = e_{act} + CD$$

$$\Rightarrow \frac{GV_{\text{max}}^2}{127R} = \frac{GV_{\text{avg.}}^2}{127R} + CD$$

$$\Rightarrow \frac{1.750 \times 130^2}{127 \times \frac{1750}{2}} = \frac{1.750 \times 86.45^2}{127 \times \frac{1750}{2}} + CD$$

$$\Rightarrow$$
 0.2661 = 0.1177 + CD

⇒
$$CD = 0.1484 \text{ m} = 14.84 \text{ cm} \neq 10 \text{ cm}$$

Provide CD = 10 cm and calculate V_{max} again

$$\frac{GV_{\text{max}}^2}{127R} = \frac{GV_{\text{avg}}^2}{127R} + CD$$

$$\Rightarrow \frac{1.750 \times V_{\text{max}}^2}{127 \times \frac{1750}{2}} = \frac{1.750 \times 86.45^2}{127 \times \frac{1750}{2}} + \left(\frac{10}{100}\right)$$

$$\Rightarrow$$
 $V_{\rm max}$ = 117.574 kmph \simeq 118 kmph

25. (a)

26. (b)

$$R = \frac{0.388w^2}{\frac{T}{2} - S}$$

$$R = \frac{0.388w^2}{\frac{T}{2} - \left[6 + \frac{\text{Trade of main landing gear}}{2}\right]}$$

$$300 = \frac{0.388 \times 35^2}{\frac{22.5}{2} - \left[6 + \frac{\text{Trade of main landing gear}}{2}\right]}$$

Trade of main landing gear = $7.332 \text{ m} \approx 7.33 \text{ m}$

27. (a)

Gate capacity for single gate,

$$G_C = \frac{1}{\text{Weighted service time}}$$

$$= \frac{1}{(0.2 \times 30) + (0.2 \times 40) + (0.6 \times 60)}$$

$$= 0.02 \text{ aircraft/min/gates}$$
Capacity of all gates $C_r = G_C \times \text{Number of gate}$

$$= 0.02 \times 20$$

$$= 0.4 \text{ aircraft/min}$$

$$= 24 \text{ aircraft/hour}$$

28. (c)

A.R.T. =
$$T_a + \frac{1}{3}(T_m - T_a)$$

= $25 + \frac{1}{3}(35 - 25) = 28.33$ °C

29. (c)

- Zero fuel weight is the sum of empty operating weight and maximum payload.
- Maximum landing weight is less than maximum takeoff weight because fuel is burned during flight.
- Maximum ramp weight is greater than maximum takeoff weight because extra fuel is also required for taxing.

Internal force developed,
$$F = \alpha TEA = 2 \times 10^{-5} \times 30 \times 20 \times 10^{5} \times 60$$

= 72000 kg
Resistance of track = 720 kg/km

$$\therefore \qquad \text{Length to resist at one end} = \frac{72000}{720} \text{ km}$$
$$= 100 \text{ km}$$

 \therefore Total breathing length required = $2 \times 100 = 200 \text{ km}$