
• CLASS TEST • S.No.: 01SK_ECEE_ABC_200225								225		
Delhi Bhopal Hyderabad Jaipur Pune Kolkata Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612										
	EC-EE									
			Date	ofTest	:20/	02/2025	5			
AN	SWER KEY	>								
1.	(c)	7.	(d)	13.	(b)	19.	(b)	2	5.	(a)
2.	(c)	8.	(a)	14.	(b)	20.	(c)	2	6.	(a)
3.	(b)	9.	(c)	15.	(b)	21.	(a)	2	7.	(c)
4.	(d)	10.	(c)	16.	(c)	22.	(a)	2	8.	(b)
5.	(c)	11.	(b)	17.	(c)	23.	(c)	2	9.	(c)
6.	(b)	12.	(b)	18.	(d)	24.	(b)	3	0.	(a)

1. (c)

MADE EASY

The function is $BD + \overline{B}\overline{D} + \overline{A}C$

2. (c)

% Resolution =
$$\frac{1}{2^N - 1} \times 100\%$$
 = $\frac{1}{2^4 - 1} \times 100\%$ = $\frac{100}{15}$ = 6.67%

3. (b)

Given that,

1011001111
+1
1011010000
Complemented
output

 \therefore No. of flip flop = 5

4. (d)

The flip-flop is connected in toggle mode. Thus, $Q_{n+1} = \overline{Q}_n$.

5. (c)

The excitation table of a *J*-*K* flip-flop can be given as

Q_n	Q_{n+1}	J	K	
0	0	0	x	
0	1	1	x	
1	0	x	1	$\leftarrow \text{Required excitation}$
1	1	x	0	

6. (b)

In the given digital circuit each multiplexer is working as a NOT gate thus it is a ring oscillator

with five NOT gates. The frequency of oscillation will be $f = \frac{1}{2Nt_{pd}}$.

N = number of NOT gates in cascade t_{pd} = propagation delay of each NOT gate. $f = \frac{1}{2 \times 5 \times 25 ns} = 4 \times 10^{6} \text{ Hz} = 4 \text{ MHz}.$

:.

7. (d)

As *A*, *B* is the select line and *C* is the input,

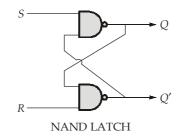
		I_0	I_1	I_2	I_3
	\overline{C}	0	2	4	6
	С	1	3	5	\bigcirc
		0	1	\overline{C}	1
So,	Σm (2, 3, 4, 6, 7) = To	otal	no. o	f mii	n-terms = 5

8. (a)

In general, the range of numbers that can be represented by an *n*-bit number with 2's complement representation is (-2^{n-1}) to $(+2^{n-1} - 1)$. The 2's complement is the standard representation used for signed binary representation.

9. (c)

The Karnaugh map for POS form can be given by

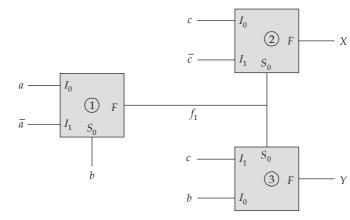

AB CD	00	01	11	10
00	0			0
01		0	0	
11		0	0	
10	0			0

POS form of f is given as,

$$f(A, B, C, D) = (B+D)(\overline{B}+\overline{D})$$

10. (c)

SR latch by cross-coupling two NAND gates



If the both *S* and *R* inputs are set 0 then the result will be as follows: Truth table for the SR latch using the NAND gates

S	R	Q
0	0	Invalid state ($Q = Q' = 1$)
0	1	1
1	0	0
1	1	Previous state
Q =	1	
Q' =	1	

∴ and

11. (b)

The output of 1st MUX, $f_1 = (a\overline{b} + \overline{a}b)$

Thus,
Output
$$X = \overline{(a\overline{b} + \overline{a}b)}c + (a\overline{b} + \overline{a}b)\overline{c}$$

 $= a \oplus b \oplus c$
and
Output $Y = \overline{(a\overline{b} + \overline{a}b)}b + (a\overline{b} + \overline{a}b)c$
 $= ab + a\overline{b}c + \overline{a}bc = (ab + a\overline{b}c) + (ab + \overline{a}bc)$
 $= a(b + \overline{b}c) + b(a + \overline{a}c) = ab + bc + ca$

So, the given circuit can act as a full-adder.

12. (b)

For
$$A = 1,$$

$$B = 0$$
the output of ex-or gate will be 1.
So,
$$I_0 = 1$$

$$I_1 = 0$$

$$I_2 = B = 0$$

$$I_3 = A = 1$$

$$Y = \overline{C}\overline{D}I_0 + \overline{C}DI_1 + C\overline{D}I_2 + CDI_3 = \overline{C}\overline{D} + CD$$

$$Y = C \odot D$$

13. (b)

Initial input to J_1K_1 will be 1 1 Input to J_0K_0 will be 1 0 After 1st clock pulse Q_0Q_1 will be 1 1 Input to J_1K_1 after 1st clock pulse will be 0 0 Input to J_0K_0 after 1st clock pulse will be 0 1 After 2nd clock pulse Q_0Q_1 will be 0 1

14. (b)

The *K*-map of the given function will be as shown below.

wx yz	00	01	11	10
00	0	0		x
01	0	0		
11				
10	0	0	0	x

So, $F(w, x, y, z) = (w + y)(\overline{w} + x)$

15. (b)

Present State		State	Next State			T_A
Ç	Q_B	Q_A	Q_B^+	Q_A^+		
	0	0	1	1	1	1
	0	1	1	0	1	1
	1	0	0	0	1	0
	1	1	0	1	1	0
$T_B = 1;$			$T_A = \dot{\zeta}$	$\bar{Q}_B \bar{Q}_A + \bar{Q}_B Q_A$		
			$T_A = \dot{Q}$	\overline{Q}_B		

16. (c)

wx + w(x + y) + x(x + y) = wx + wx + wy + x + xy= x(1 + y + w + w) + wy= x + wy

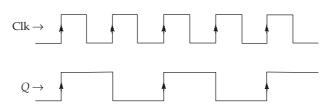
 \therefore option (a) is correct

$$\overline{w\overline{x}(y+\overline{z})} + \overline{w}x = \overline{w\overline{x}} + \overline{y+\overline{z}} + \overline{w}x$$
$$= (\overline{w}+x) + (\overline{y}z) + \overline{w}x$$
$$= \overline{w} + x + \overline{y}z$$

 \therefore option (b) is correct

$$(w\overline{x}(y+x\overline{z})+\overline{w}\overline{x})y = (w\overline{x}y+w\overline{x}\cdot x\overline{z}+\overline{w}\overline{x})y$$
$$= w\overline{x}y+\overline{w}\overline{x}y$$
$$= (w+\overline{w})\overline{x}y$$
$$= \overline{x}y$$
$$\therefore \text{ option (c) is incorrect}$$

(w + y) (wxy + wyz) = wxy + wyz + wxy + wyz


= wxy + wyz

option (d) is correct

17. (c)

J-K flip flop is in toggle mode so after every clock pulse output *Q* toggles so output *Q* will be as

and Q is clock to MOD-3 down counter then after 5 clock pulses of input clk there are 3 +ve edge of clock pulses applied to counter

.: output of counter goes to

A В Initially $\rightarrow 0$ 0 $1^{st} clk \rightarrow 1$ 1 $2^{rd} clk \rightarrow 1$ 0 $3^{rd} \ clk \ \rightarrow \ 0$ 1

 \therefore So the states of *Q*, *A*, *B* respectively are 101.

18. (d)

	Α	В	Ŷ	Χ	T_A
Initially	1	1	1	1	0
$1^{\rm st} \ {\rm CLK} \rightarrow$				0	1
$2^{nd} CLK \rightarrow$ $3^{rd} CLK \rightarrow$	0	0	0	1	1
3^{rd} CLK \rightarrow	1	1	1	1	0
$4^{th} \ CLK \rightarrow$	1	0	1	0	

19. (b)

.:.

$$Y = \overline{\overline{Q_1 Q_3} \cdot \overline{Q_2 Q_3}}$$
$$= Q_1 Q_3 + Q_2 Q_3$$
$$Y = Q_3 (Q_1 + Q_2)$$

 $(ABY)_2 = (101)_2 = 5$

γ

To reset the counter output Y must be one

Y =	$Q_{3}(Q_{1}$	+ Ç) ₂)	
	Q_3	Q_2	Q_1	Q_0
	1	0	1	0
	1	1	0	0
	1	1	1	0

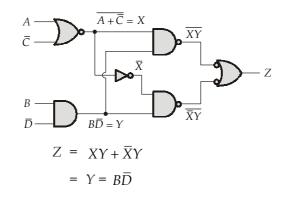
when the counter output $Q_3Q_2Q_1Q_0 = 1010$. Then the output Y will give output 1 and it will be given to inverter, so it will reset the counter and again counting will start and it will not go for further combinations.

20. (c)

$$S = \left(\overline{P+Q} + \overline{P+P+Q}\right) \left(\overline{P+P+Q}\right)$$

Consider, $\overline{P+Q} = X$
 $\overline{P+(\overline{P+Q})} = Y$

and


Then,

$$S = (X + Y)Y = XY + Y = Y$$

$$S = \overline{P + (\overline{P + Q})} = \overline{P} \cdot (P + Q) = \overline{P}Q$$

for, S = 1, *P* should be '0' and *Q* should be '1'.

21. (a)

So

22. (a)

$$A\overline{C} + \overline{A}C = A(\overline{A\overline{B}} + \overline{A}B) + \overline{A}(A\overline{B} + \overline{A}B)$$

= $A(\overline{A} + B)(A + \overline{B}) + \overline{A}A\overline{B} + \overline{A}\overline{A}B$
= $(A\overline{A} + AB)(A + \overline{B}) + \overline{A}B$
= $AB + AB\overline{B} + \overline{A}B$
= $AB + \overline{A}B$
= $B(A + \overline{A})$
= B

Alternate Solution:

$$A\overline{B} + \overline{A}B = C = A \oplus B \text{ (Given)}$$

$$\overline{A}C + A\overline{C} = C = A \oplus C = A \oplus (A \oplus B)$$

$$= 0 \oplus B = B \qquad (\because A \oplus A = 0, \ 0 \oplus A = A)$$

23. (c)

$$S_{1} = A \oplus B$$

$$C_{1} = AB$$

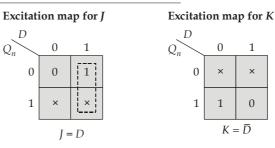
$$S = (A \oplus B) \oplus AB$$

$$= (A \oplus B) \cdot \overline{A}B + (\overline{A \oplus B}) \cdot AB$$

$$= (A\overline{B} + \overline{A}B)(\overline{A} + \overline{B}) + (AB + \overline{A}\overline{B})(AB)$$

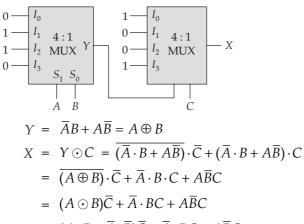
$$= A\overline{B} + \overline{A}B + AB = A + B$$

$$C = (A \oplus B) \cdot AB = (A\overline{B} + \overline{A}B)AB$$

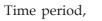

$$= 0$$

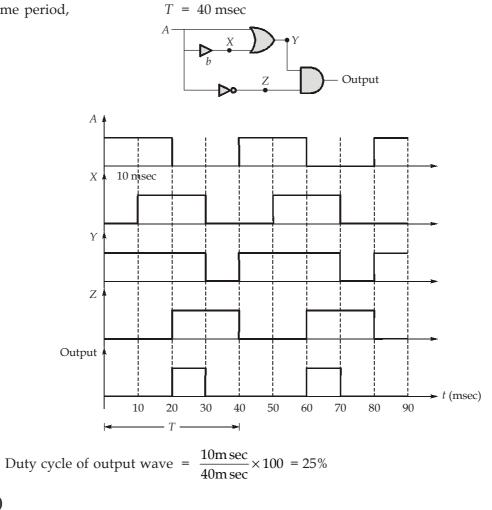
Alternate Solution:

A	В	<i>S</i> ₁	<i>C</i> ₁	$S \\ (S_1 \oplus C_1)$	$C \\ (S_1 C_1)$			
0	0	0	0	0	0			
0	1	1	0	1	0			
1	0	1	0	1	0			
1	1	0	1	1	0			
\therefore $C = 0$								
and					S =	A + B		


24. (b)

Q_n	D	Q_{n+1}	Excitation inpu		
			J	K	
0	0	0	0	×	
0	1	1	1	×	
1	0	0	×	1	
1	1	1	×	0	


25. (a)


We know,

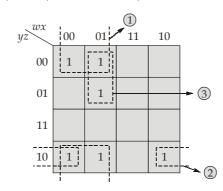
- $= (A \cdot B + \overline{A} \cdot \overline{B})\overline{C} + \overline{A} \cdot BC + A\overline{B}C$
- $= A \cdot B \cdot \overline{C} + \overline{A} \overline{B} \overline{C} + \overline{A} \cdot B \cdot C + A \overline{B} C$

26. (a)

27. (c)

Given, Boolean function,

$$F = m_0 + m_2 + m_3 + m_5 + m_7$$


Using *K*-map for minimization

$$\overline{PR} = \overline{PR} + \overline{PQ} + PR$$

India's Best Institute for IES, GATE & PSUe

28. (b)

 $f(w, x, y, z) = \Sigma(0, 2, 4, 5, 6, 10)$

:. 3 essential prime implicants.

29. (c)

By truth table

Number of clock pulse	$D_{\mathrm{in}} = A \oplus D$	A	В	С	D
initial	-	1	1	0	1
1	0	0	1	1	0
2	0	0	0	1	1
3	1	1	0	0	1
4	0	0	1	0	0
5	0	0	0	1	0
6	0	0	0	0	1
7	1	1	0	0	0
8	1	1	1	0	0

Hence 8 clock cycles are required for state 1100.

30. (a)

Given configuration is MOD-10 up counter

$$\therefore \qquad \text{Frequency at output} = \frac{\text{Clock frequency}}{10} = \frac{20\text{K}}{10} = 2 \text{ kHz}$$

####