- CLASS	TES	5Т —		S.Ne	o. : 01_SKI	ME_ABCE	_200225	
Delhi Bhopal Hyderabad Jaipur Pune Kolkata Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612								
REASONING AND APTITUDE MECHANICAL ENGINEERING Date of Test : 20/02/2025								
M	IEC	HAN Date	ICAL of Test :	ENGINE 20/02/202	ERIN 25	IG		
ANSWER KEY))	HAN Date	ICAL of Test :	ENGINE 20/02/202	ERIN 25	IG		
ANSWER KEY	IEC	(c)	ICAL of Test : 13.	ENGINE 20/02/202	ERIN 25	IG 25.	(c)	
ANSWER KEY 1. (c) 2. (a)	IEC ▶ 7. 8.	HAN Date (c) (c)	ICAL of Test : 13. 14.	ENGINE 20/02/202 (a) 19 (a) 20	ERIN 25 . (d) . (c)	IG 25. 26.	(c) (d)	
ANSWER KEY 1. (c) 2. (a) 3. (b)	► IEC 7. 8. 9.	HAN Date (c) (c) (c)	ICAL of Test : 13. 14. 15.	ENGINE 20/02/202 (a) 19. (a) 20. (a) 21.	ERIN 25 (d) (c) (a)	IG 25. 26. 27.	(c) (d) (c)	
ANSWER KEY 1. (c) 2. (a) 3. (b) 4. (b)	 IEC 7. 8. 9. 10. 	HAN Date (c) (c) (c) (b)	ICAL of Test : 13. 14. 15. 16.	ENGINE 20/02/202 (a) 19 (a) 20 (a) 21 (c) 22	ERIN 25 . (d) . (c) . (a) . (a)	IG 25. 26. 27. 28.	(c) (d) (c) (d)	
ANSWER KEY 1. (c) 2. (a) 3. (b) 4. (b) 5. (a)	 ► 7. 8. 9. 10. 11. 	HAN Date (c) (c) (b) (a)	ICAL of Test : 13. 14. 15. 16. 17.	ENGINE 20/02/202 (a) 19 (a) 20 (a) 21 (c) 22	ERIN 25 . (d) . (c) . (a) . (a) . (a)	IG 25. 26. 27. 28. 29.	(c) (d) (c) (d) (d)	

DETAILED EXPLANATIONS

1. (c)

$$C = \frac{A+D}{2}, D > B > C$$
$$B = \frac{A+E}{2}$$
$$A+D = 2C$$
$$A+E = 2B$$

C < B < D < E

Since $B > C \Rightarrow E > D$

Since *C* is average of *A* and *D*, so A < C \Rightarrow The correct sequence is A < C < B < D < EThe middle number is *B*.

2. (a)

Let the age of Rohini in 2014 is *x* years,

His brother's age = x - 6 years

In 2004,

$$3 (x - 6 - 10) = x - 10$$

$$3 x - 48 = x - 10$$

$$2x = 38$$

$$x = 19$$

Rohini's age in 2014 is 19 years.

$$\Rightarrow$$
 She was born in 2014-19 = 1995

3. (b)

Let, The full fare = ₹ xThe reservation charge = ₹ yx + y = 362

$$\frac{3}{2}x + 2y = 554$$

From here, x = 340 and y = 22 \Rightarrow Reservation charge is ₹ 22.

4. (b)

The area of sector
$$OAB = \pi r^2 \times \frac{\theta}{360^\circ} = \pi (10)^2 \times \frac{\theta}{360^\circ} = 80$$

 $\left(\frac{\theta}{360^{\circ}}\right) = \frac{80}{\pi \times (10)^2}$

From here,

India's Beet Institute for IES, GATE & PSUs

Length of arc
$$AB = 2\pi r \times \frac{\theta}{360^\circ} = 2\pi \times 10 \times \frac{80}{\pi \times (10)^2} = 16 \text{ cm}$$

Perimeter of platform = 16 + 10 + 10 = 36 cm Length of the wire required = $3 \times 36 = 108$ cm

5. (a)

According to the given information,

$$\frac{23}{100} = \frac{10 \times 2 + 20 \times 3 + 30 \times x}{100 \times (2 + 3 + x)}$$
$$23 = \frac{20 + 60 + 30 \times x}{5 + x}$$
$$23(5 + x) = 80 + 30x$$
$$7x = 35$$
$$x = 5$$
$$(7 + 2) \times 4 = 36$$

6. (d)

7. (c)

The number of boys in 6th class

$$= \frac{20}{100} \times \frac{3}{5} \times 1000 = 120$$

The number of boys in 9th class

$$= \frac{18}{100} \times \frac{3}{5} \times 1000 = 108$$

Total boys in $6^{\text{th}} \& 9^{\text{th}} \text{ class}= 120 + 108 = 228$

8. (c)

Series follows the pattern,

$$a_{n+1} = a_n \times a_{n+2}$$

$$a_2 = 4 = 2 \times 2$$

$$a_3 = 2 = 4 \times 0.5$$

$$a_4 = 0.5 = 2 \times 0.25$$

$$a_5 = 0.25 = 0.5 \times 0.5$$

$$a_6 = 0.5 = 0.25 \times x$$

$$x = \frac{0.5}{0.25} = 2$$

 \Rightarrow

9. (c)

Work done by the waste pipe in 1 min = $\frac{1}{20} - \left(\frac{1}{30} + \frac{1}{36}\right) = -\frac{1}{90}$ (-ve means emptying)

$$\therefore \quad \text{Volume of } \frac{1}{90} \text{ part } = 50 \text{ litre}$$

$$\Rightarrow \quad \text{Volume of tank } = 50 \times 90 = 4500 \text{ litre}$$

10. (b)

:.

 \Rightarrow

 \Rightarrow

(a)

11.

Let the quantity of wine in the cast originally be x litres. Then, quantity of wine left in the cast after 5 operation

$$= \left[x \left(1 - \frac{24}{x} \right)^5 \right] \text{ litres}$$

$$\frac{x \left(1 - \frac{24}{x} \right)^5}{x} = \frac{32}{32 + 211} = \frac{32}{243}$$

$$\left(1 - \frac{24}{x} \right)^5 = \left(\frac{2}{3} \right)^5$$

$$x = 72 \text{ litres}$$
First month's saving $= ₹ 20$
Second month's saving $= ₹ 20 + 4$
Saving after n months $= ₹ 20 + (n - 1)4$

$$\frac{n}{2} (2 \times 20 + (n - 1) \times 4) \ge 1000$$

$$40n + n(n - 1) \times 4 \ge 2000$$

$$40n + 4n^2 - 4n \ge 2000$$

$$40n + 4n^{2} - 4n^{2} \ge 2000$$

$$4n^{2} + 36n - 2000 \ge 0$$

$$n \ge 18.30, -27.30$$

$$n = 19$$

⇒ After 19 months his savings will be greater than ₹ 1000.

12. (b)

 \Rightarrow

Let the cost prices are x, 2x, 4x

Let the quantities are 2*y*, 5*y*, 2*y*

Total cost price =
$$2xy + 10xy + 8xy = 20xy$$

Total profit =
$$\frac{10}{100} \times 2xy + \frac{20}{100} \times 10xy + \frac{25}{100} \times 8xy$$

= $0.2 xy + 2 xy + 2 xy = 4.2 xy$

Profit percentage =
$$\frac{4.2xy}{20xy} \times 100 = 21\%$$

India's Beet Institute for IES, GATE & PSUe

13. (a)

According to given data,

20 ×

$$t + 12(10 - t) = 150$$
$$8t + 120 = 150$$
$$t = \frac{30}{8} = \frac{15}{4}$$

The ratio of distance,

$$20 \times \frac{15}{4}$$
 : $12 \times \left(10 - \frac{15}{4}\right)$
75 : 75
1 : 1

14. (a)

Volume of total wood = $\pi r^2 \times h$ = $\pi r^2 \times 2r$

[:: h = diameter = 2r]

The radius of largest sphere possible = *r* volume of sphere = volume of wood used

$$= \frac{4}{3}\pi r^3$$

Volume of wood wasted = $2\pi r^3 - \frac{4}{3}\pi r^3 = \frac{2}{3}\pi r^3$

Required ratio =
$$\frac{4}{3}\pi r^3 : \frac{2}{3}\pi r^3 = 2:1$$

15. (a)

From figure,	$\tan 30^\circ = \frac{h}{AC}$	
	$AC = h\sqrt{3}$	(i)
	$\tan 60^\circ = \frac{h}{AD}$	
	$AD = \frac{h}{\sqrt{3}}$	(ii)
Also,	CD = AC - AD	
	$= h\sqrt{3} - \frac{h}{\sqrt{3}} = \frac{2h}{\sqrt{3}}$	

Time taken to cover *CD* is 10 min,

we know speed = $\frac{\text{Distance}}{\text{time}}$

$$\therefore \qquad S = \frac{\frac{2h}{\sqrt{3}}}{10} = \frac{h}{5\sqrt{3}}$$

$$\therefore \text{ time taken to cover, } AD = \frac{\text{(Distance AD)}}{\text{Speed}} = \frac{\left(\frac{h}{\sqrt{3}}\right)}{\frac{h}{(5\sqrt{3})}} = 5 \text{ minutes}$$

16. (c)

Probability that either one of them is lying

$$= \frac{90}{100} \times \frac{20}{100} + \frac{10}{100} \times \frac{80}{100}$$

Chances that he is first one =
$$\frac{\frac{10}{100} \times \frac{80}{100}}{\frac{90}{100} \times \frac{20}{100} + \frac{10}{100} \times \frac{80}{100}} \times 100 = \frac{\frac{800}{10000}}{\frac{1800}{10000} + \frac{800}{10000}} = \frac{800}{2600} = \frac{8}{26} = \frac{4}{13}$$

17. (c)

Let the number of trucks to be used initially = x

Let capacity of one truck =
$$y$$

 $xy = 60$
 $(x + 4)(y - 0.5) = 60$
 $xy + 4y - 0.5x - 2 = 60$
 $4y - 0.5x - 2 = 0$

 $\therefore xy = 60$

$$4\left(\frac{60}{x}\right) - 0.5x - 2 = 0$$

240 - 0.5x² - 2x = 0
x² + 4x - 480 = 0
x = 20, -24

By neglecting the negative value, we get, x = 20.

18. (b)

Let the cost price of the item = $\overline{\mathbf{x}}$ x

selling price =
$$x \times \frac{125}{100} = 1.25x$$

discount = 25%

 $\Rightarrow \qquad \text{marked price} = 1.25x \times \frac{100}{75} = \mathbf{\overline{\xi}} \frac{5}{3}x$

New rate of discount = 10%

New selling price =
$$\frac{5x}{3} \times \frac{90}{100} = \underbrace{\underbrace{3x}}_2$$

New profit =
$$\frac{3x}{2} - x = \frac{x}{2}$$

Profit percentage =
$$\frac{x/2}{x} \times 100 = 50\%$$

19. (d)

Let the number of fruits be 2k, 5k and 8k Given, 5k - 2k = multiple of 6 and 8 LCM of 6 and 8 is 24 Let's say 5k - 2k = 24n 3k = 24nFor k to be a natural number and have minimum value, n should be equal to 1 3k = 24Or k = 8Hence, the minimum number of fruits $= 2k + 5k + 8k = 15 \times 8 = 120$

20. (c)

Given, $x^2 + 5x - 7 = 0$ has roots *a* and *b*. We know that,

Sum of roots in a quadratic equation = $a + b = \frac{(-5)}{1} = -5$

Product of the roots =
$$ab = \frac{(-7)}{1} = -7$$
.

Now, The second equation $2x^2 + px + q = 0$ has roots a + 1 and b + 1.

Sum of the roots =
$$a + 1 + b + 1 = a + b + 2 = \frac{(-p)}{2} = -5 + 2 \Rightarrow -3 = \frac{(-p)}{2} \Rightarrow -p = -6 \Rightarrow p = 6$$

Product of the roots = $(a + 1)(b + 1) = ab + a + b + 1 = \frac{q}{2}$.

We know the values of *ab* and *a* + *b*. Substituting this, we get, $-7 + (-5) + 1 = \frac{q}{2} \Rightarrow q = -22$.

$$\therefore \qquad p+q = 6-22 = -16$$

21. (a)

First, the n^{th} term of *L*.*H*.*S* need to be defined by observing the pattern :-

It is $\log_{2^n} 2.2^n$

 $\log_2 4 \times \log_4 8 \times \log_8 16 \times \log_{2^n} 2.2^n = 49$

Whenever solving a logarithm equation, generally one should approach towards making the base same.

Making the base 2 :-

 $\log_{2} 4 \times \frac{\log_{2} 8}{\log_{2} 4} \times \frac{\log_{2} 16}{\log_{2} 8} \times \dots \frac{\log_{2} 2.2^{n}}{\log_{2} 2^{n}}$ $\log_{2^{n}} 2 + \log_{2^{n}} 2^{n} = 49$ $\Rightarrow \qquad 1 + n = 49$ $\Rightarrow \qquad n = 48$

22. (a)

Ways to select 2 females =
$${}^{5}C_{2}$$

Ways to select 1 male = ${}^{7}C_{1}$
 \therefore Required probability = $\frac{{}^{5}C_{2} \times {}^{7}C_{1}}{{}^{12}C_{3}} = \frac{7}{22}$

23. (a)

...

Sum of angles in *n* sided polygon = (n - 2) 180° In hexagon n = 6

$$Sum = (6 - 2)180 = 720^{\circ}$$

Each angle =
$$\frac{720^\circ}{6} = 120^\circ$$

Now, in $\triangle CDE$. CD = DE, so it is an isosceles triangle. The angle at $D = 120^{\circ}$, so other two angles must be 30° each. So $\angle DEC = \angle DCE = 30^{\circ}$.

Now,

$$\angle CDG = \angle DCG = 30^{\circ}$$

 $\therefore \qquad \angle DGC = 180^{\circ} - 30^{\circ} - 30^{\circ} = 120^{\circ}$
 $\angle DGE = 180^{\circ} - \angle DGC = 180^{\circ} - 120^{\circ} = 60^{\circ}$

24. (a)

With no restrictions, the six children can be arranged in 6! ways i.e. 720 ways.

In all these arrangements it is just as likely for *E* to be on the left of *F* as it is for *E* to be on the right of *F*.

Therefore, exactly half must have *E* to the right of *F*, and exactly half must have *E* to the left of *F*.

Therefore, exactly $\frac{720}{2} = 360$ of the arrangements have *E* to the left of *F*.

25. (c)

So, $(13^7 - 7^7) + (2^6 - 4^6)$, both are divisible by 6 \Rightarrow Remainder = -2 + 6 = 4 $(a^n - b^n)$ is divisible by (a - b) $(a^n - b^n)$ is divisible by (a + b) if 'n' is even natural number

26. (d)

$$CP = \frac{1026}{1+0.14} = Rs.900$$

If it had been sold for 693 then,

Loss = 900 - 693 = Rs. 207

27. (c)

Suppose, the quantity sold at loss be y kg. Let CP per kg = x

Total SP =
$$1.1 \times (20 - y)x + 0.95 \times y \times x$$

= $(22 - 1.1y + 0.95y) \times x = (22 - 0.15y) \times x = 1.08x \times 20$
 $22 - 0.15y = 21.6$
 $y = \frac{0.4}{0.15} = 2.67 \text{ kg}$

28. (d)

2	11880
2	5940
2	2970
3	1485
3	495
3	165
5	55
11	11
	1

$$11880 = 2^{3} \times 3^{3} \times 5 \times 11$$

Sum of all factors =
$$\frac{(2^{4} - 1)(3^{4} - 1)(5^{2} - 1)(11^{2} - 1)(2^{2} - 1)(3 - 1)(5 - 1)(11 - 1)}{(2 - 1)(3 - 1)(5 - 1)(11 - 1)}$$

14 Mechanical Engineering

$$= \frac{15 \times 80 \times 24 \times 120}{1 \times 2 \times 4 \times 10} = 43200$$

Since unity is excluded,

The net sum of all factors = 43200 - 1 = 43199

29. (d)

Let equal sides of the isosceles triangle be *x*, Then $x^2 + x^2 = 10^2$

$$x = 5\sqrt{2} \text{ cm}$$

So,
Final area =
$$8 \times \left(\frac{1}{8} \times \pi \times 10^2 - \frac{1}{2} 5\sqrt{2} \times 5\sqrt{2}\right)$$

= $\pi \times 10^2 - 4 \times 25 \times 2$
= $100\pi - 200$
Area = 114.16 cm^2

In this case,