mRDE ERSU

India's Best Institute for IES, GATE \& PSUs

Questions to be Challenged in

GATE 2020
 Electronics and Communication Engineering

www.madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 | Ph:011-45124612, 9958995830
Q. 38 The base of an npn BJT T1 has a linear doping profile $N_{B}(x)$ as shown below. The base of another npn BJT T2 has a uniform doping N_{B} of $10^{17} \mathrm{~cm}^{-3}$. All other parameters are identical for both the devices. Assuming that the hole density profile is the same as that of doping, the common-emitter current gain of T 2 is

(a) approximately 0.3 times that of T 1 (b) approximately 0.7 times that of T 1
(c) approximately 2.5 times that of T 1 (d) approximately 2.0 times that of T 1

Ans. (*)

$$
\begin{gathered}
\frac{\beta_{1}}{\beta_{2}}=\frac{\int_{0}^{W} N_{A_{2}}(x) d x}{\int_{0}^{W} N_{A_{1}}(x) d x}=\frac{W \times 10^{17}}{\frac{1}{2} \times W \times\left(10^{17}-10^{14}\right)}=\frac{2 \times 10^{17}}{10^{17}+10^{14}} \simeq 2 \\
\beta_{2}=0.5 \beta_{1}
\end{gathered}
$$

Hence no option is matching.

GATE Ans. Key (d)

Q. 46 A one-sided abrupt pn junction diode has a depletion capacitance C_{D} of 50 pF at a reverse bias of 0.2 V . The plot of $1 / C_{D}^{2}$ versus the applied voltage V for this diode is a straight line as shown in the figure below. The slope of the plot is \qquad $\times 10^{20} \mathrm{~F}^{-}$ ${ }^{2} \mathrm{~V}^{-1}$.

(a) -1.2
(b) -5.7
(c) -3.8
(d) -0.4

Ans. (*)
Depletion or transition capacitance is,

$$
C_{D}=\frac{A \in}{W}
$$

For one-sided PN junction (Ex : $P^{+} N$ junction)
$W=\sqrt{\frac{2 \in V_{B}}{e N_{D}}}=\sqrt{\frac{2 \epsilon\left(V_{b i}-V\right)}{e N_{D}}}$

where V is anode to cathode applied potential.

$$
\begin{array}{ll}
\Rightarrow & C_{D}=\frac{A \in}{\sqrt{\frac{2 \in\left(V_{b i}-V\right)}{e N_{D}}}} \\
\Rightarrow & \frac{1}{C_{D}^{2}}=\frac{2}{A^{2} \in e N_{D}}\left(V_{b i}-V\right)
\end{array}
$$

$\frac{1}{C_{D}^{2}}$ becomes zero at $V=V_{b i}$
From above graph, $y=\frac{1}{C_{D}^{2}}=0$ at $x_{1}=V_{b i}$
And

$$
\begin{aligned}
y_{2} & =\frac{1}{C_{D}^{2}}=4 \times 10^{20} \text { at } x_{2}=-0.2 \mathrm{~V} \\
\text { Slope } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4 \times 10^{20}-0}{-0.2-V_{b i}}
\end{aligned}
$$

$\because V_{b i}$ is not provided, slope cannot be found.

GATE Ans. Key (d)

