

Ans 1 b) For a 8-bit counter type analog to digital converter using a 2 MHz clock.

Determine:

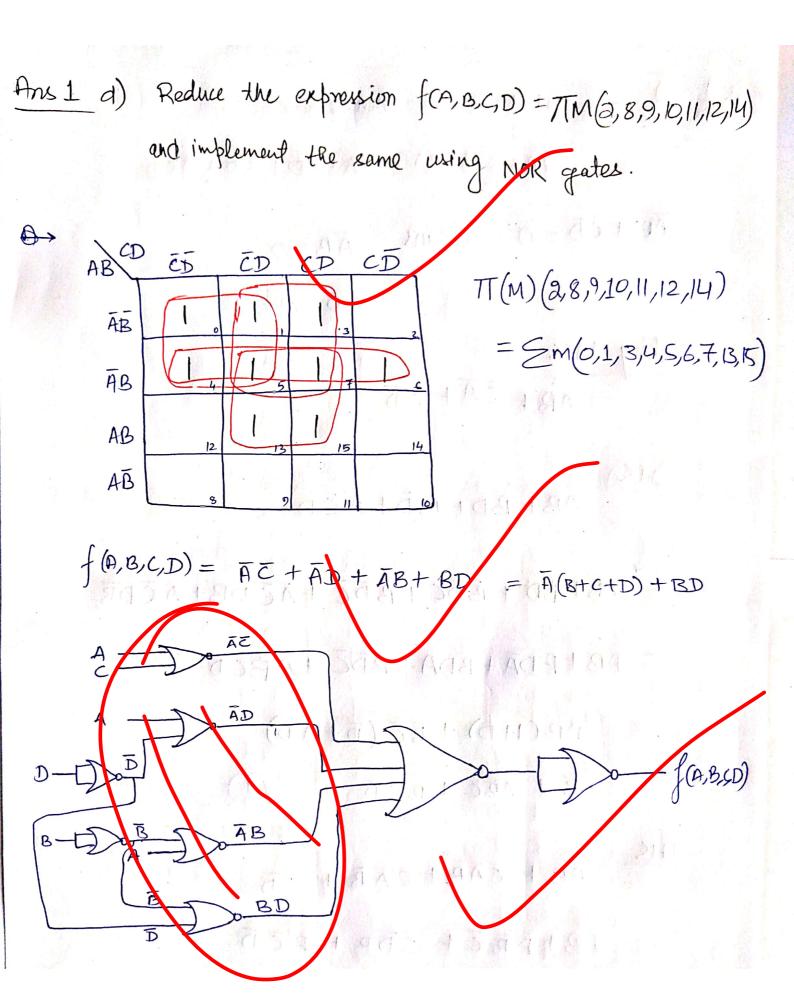
Time period
$$T = \frac{1}{2\times10^6} = 0.5 \,\mu\text{sec.}$$

max^m conversion rate =
$$\frac{1}{1} = \frac{1}{0.5} = 210^6$$
 persec

iii) Average conversion time = Adimu

$$=\frac{T+Q^{2}-1)T}{2}$$

Ans 1 c) convert a D-flip flop to function as a SR glip-flop Down Circuit. Characteristic table of SR Excitation table of If anti Qn Now to convert D guy flop to SR glip flop. R an ann 0 0 Pan oo 0 STRAn X D



Ans 4 a) What is Gray code? Give applications of Gray code?

It is a binary code. It is growing of generating binary numbers such that every step has a change of single bit only. i.e Hamming distance of this code is 1.

Applications

- · Karnaugh prap
- · Rotary encoders

(As there is only one digit change from one step to next step. It's easy to find the next location).

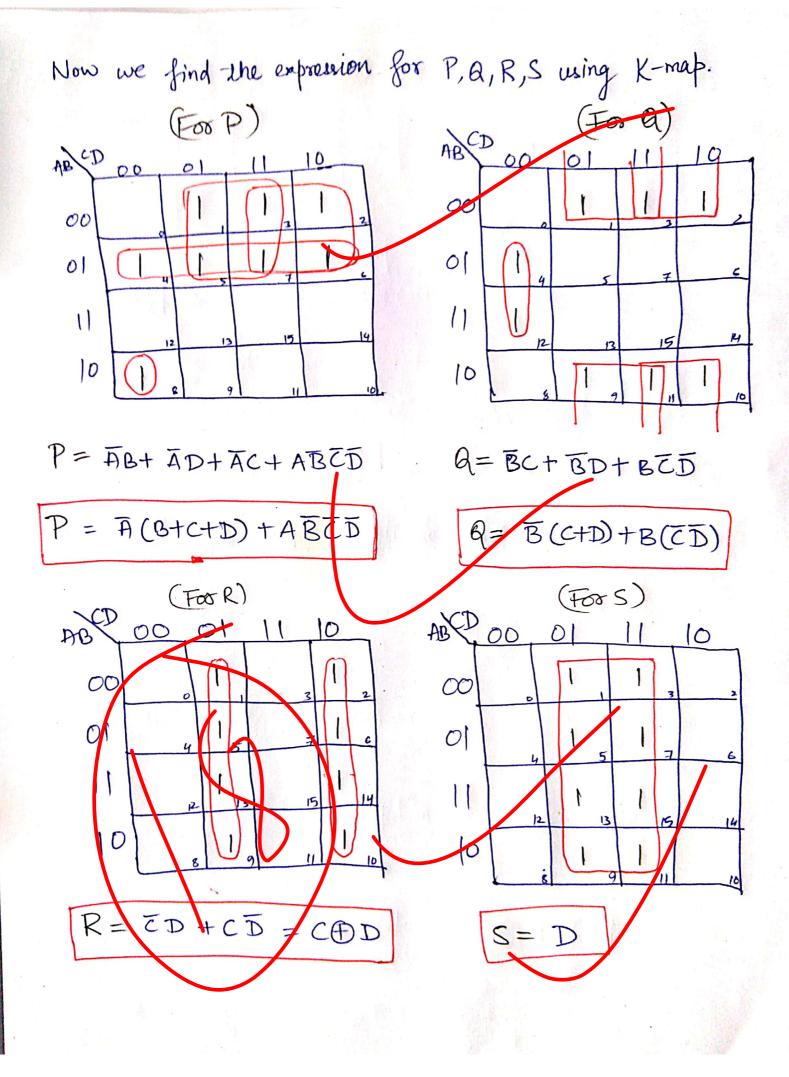
Ans 4 b) Obtain minimal SOP expression for outputs of combinational circuit that produce the 2's complement of a 4 bit binary number 3

Let the 4 bit binary nor are ABCD.

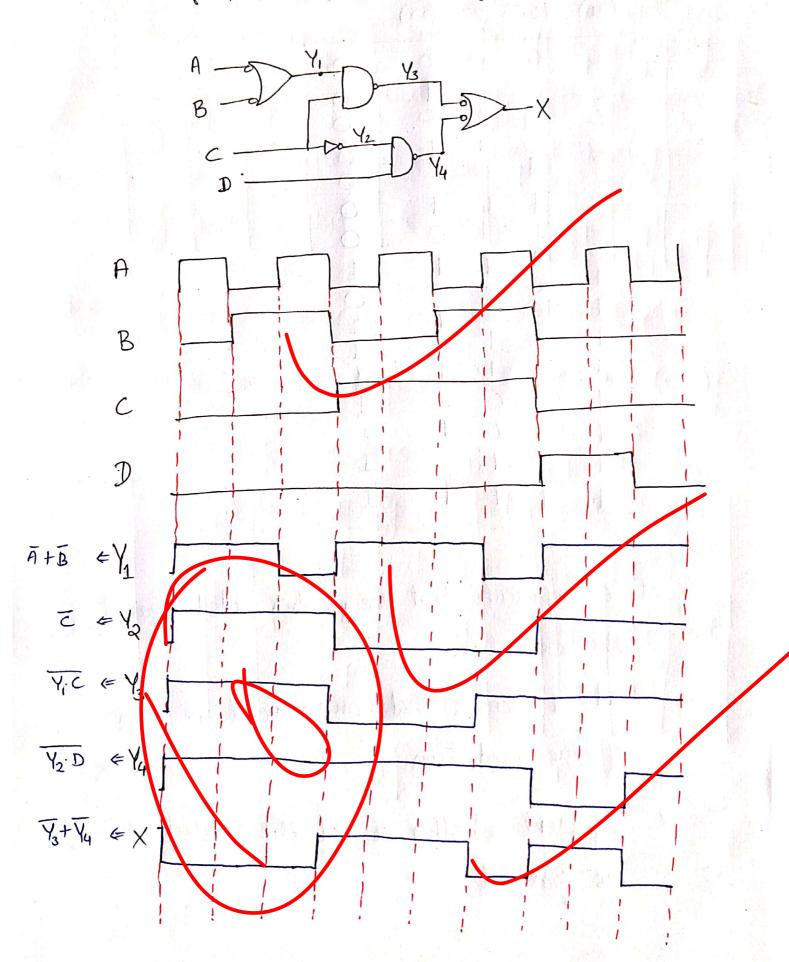
and the corresponding 2's complement = PARS

So

A 	В	<u> </u>	\mathcal{D}			P.	a	R:	S	309	1/1
0000	0000	0 0 1	0 1 0		of s	0	L		010		g.
000	0111	34	1010	5 112	Pla I						
1 1	0	0	6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	, fi	100	C	1200	101			
	1 0	()A)		000	1 1 0	1001	0101			/
	1 	0			00	0	1	0			



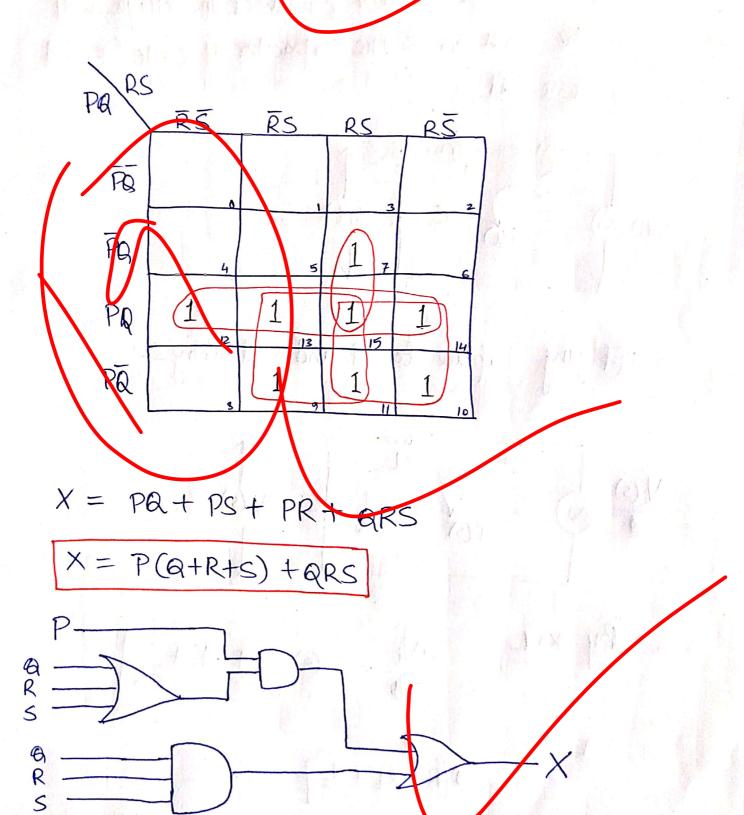
Consider the logic circuit shown below. Waveforms of A, B, C, D are shown below.



is passed.

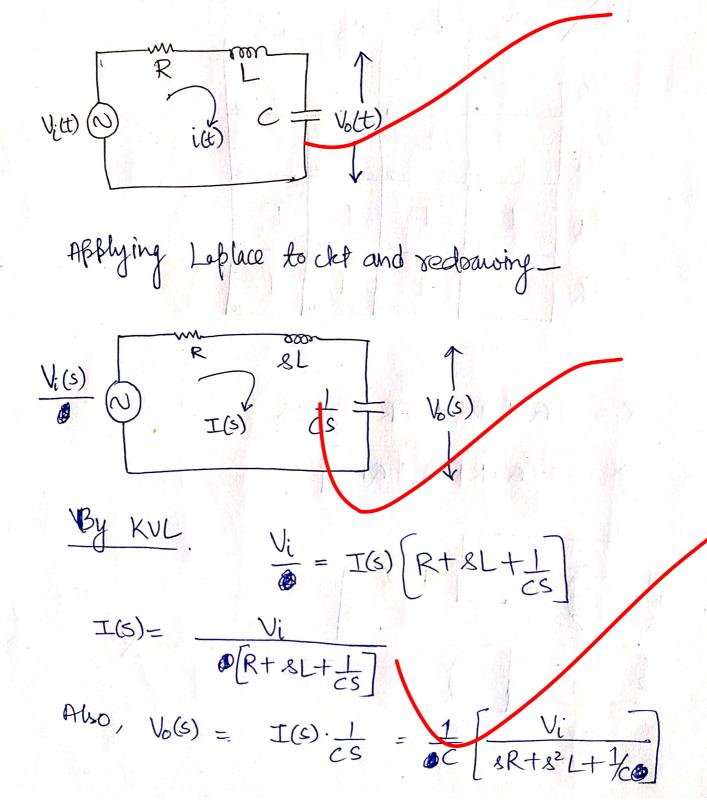
Scanned with CamScanner

when sum of the votes are greates than 50% in favor of sosolution than we take X=1.



Ans 5 a)

If Vitt) is a step voltage in the network shown in figure, find the value of resistor such that a 20% overshoot in voltage will be seen across the capacitor if C=10-6 F and L=0.5H.



$$V_{\delta}(s) = \frac{V_{i}(s)}{e^{2}LC + sRC + 1}$$

Transfer function =
$$\frac{V_0}{V_i} = \frac{1/LC}{8^2 + 8R + LC}$$

$$\frac{R}{L} = 2 \frac{1}{2} \omega_n$$

soni by tork

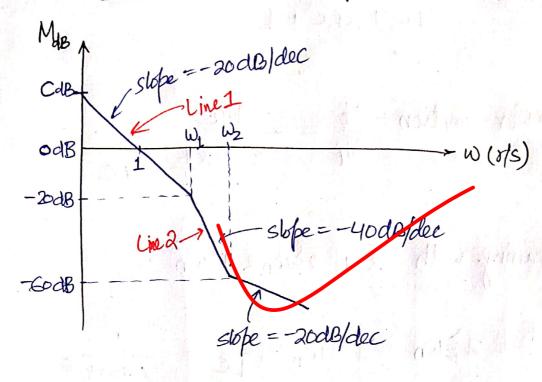
$$\frac{R}{L} = 2\frac{1}{2}\omega_n$$
 $\omega_n^2 = \frac{1}{LC} = \frac{1}{0.5 \times 10^6}$

$$02 = e^{-\sqrt{\tan \theta}}$$

$$a \leq \omega_n = \frac{R}{L}$$

Ans 5.6

Determine the Transfer Function.



From the bade plot it is clear that we have a fole at origin, then another pole at $w=\omega_1$ and a zero at $w=\omega_2$.

So the transfer faction would be.

$$T(S) = \frac{K(1+S/\omega_2)}{S(1+S/\omega_1)}$$

$$T(j\omega) = \frac{K(1+j\omega_{\omega_2})}{j\omega(1+j\omega_{\omega_1})}$$

Slope of line
$$a = \frac{-20 - (-60)}{\log \omega_1 - \log \omega_2} = -40 \text{ dB/dec}$$

log
$$\omega_2$$
 = log ω_1 + log 10

log ω_2 = log ω_1 + log 10

Slope of line 1 = -20
 $\log \omega_1 - \log 1$
 $\omega_2 = |0\omega_1|$

log $\omega_1 - \log 1$
 $\omega_2 = |0\omega_1|$
 $\omega_3 = |0\omega_1|$
 $\omega_4 = |0\omega_1|$
 $\omega_4 = |0\omega_1|$
 $\omega_5 = |\omega_5|$
 $\omega_5 = |\omega_5|$
 $\omega_6 = |\omega_6|$
 $\omega_6 = |\omega_$

Ans 5 c) By Mason's gain formula, Determine CR 61 Hi Mason's Gain Formula: CR = Pi = Forward path $\Delta i = \Delta$ corresponding to P_i $\Delta = 1 - \left(\frac{\text{Sum of}}{\text{total loops}}\right) + \left(\frac{\text{Sum of}}{\text{Two non-touching loops}}\right)$ - (Three oron-touching loops)+

Total loops:
$$L_1 = G_{11}H_1$$
 $L_{44} = G_{14}G_{15}H_4$
 $L_2 = G_{13}H_2$ $L_5 = G_{14}H_4$
 $L_3 = G_{15}H_3$

Forward paths: P1 = G1,G12G3614615 $\Delta_1 = 1 - loops not$ touching P1 <u>∆1=1</u> Pa = G6G3G4G15 Da=1 P3 = 61,6203 G17 Pu = G16G13G17 A4=1 Maria - alari di ang Two Non-touching loops: 413 = 6,4,95 43 412 = G1H1 GBH2 44 = 61,461461544 LHES = CHH, GIZHU 6213 = G312G15H3 Three non-touching loops: L, L2L3 = 51,4,6382G15H3 Now the transfer function & cesing Mason's Gpin formula is _

$$\frac{C}{R} = \frac{P_1 + P_2 + P_3 + P_4}{1 - L_1 - L_2 + L_3 + L_4 + L_5 + L_4 + L_3 + L_4 + L_4 + L_5}{- L_4 L_2}$$

$$- L_4 L_2 + L_5 + L_4 L_3 + L_4 L_3 + L_4 L_4 + L_4 L_5$$

$$- L_4 L_2 + L_5 + L_4 L_3 + L_4 L_4 + L_4 L_5$$

$$- L_4 L_2 + L_5 + L_4 L_5 + L_5 L_5 + L_5 + L_5 L_5 + L_5 + L_5 L_5 + L_5$$

Ans 5 d). Given: 2% tolerance &

$$R(S) = \frac{1}{S} \longrightarrow 15$$
 $S+15 \longrightarrow C(A)$

$$C(S) = \frac{15}{S^2 + 15S} = \frac{A}{S} + \frac{B}{S+15}$$

Using partial fraction A=1, B=-1

$$C(t) = u(t) [1 - e^{-15t}]$$

So, Time Constant = 1 sec

Rise line \Rightarrow 1-e^{-15t} = 0.9

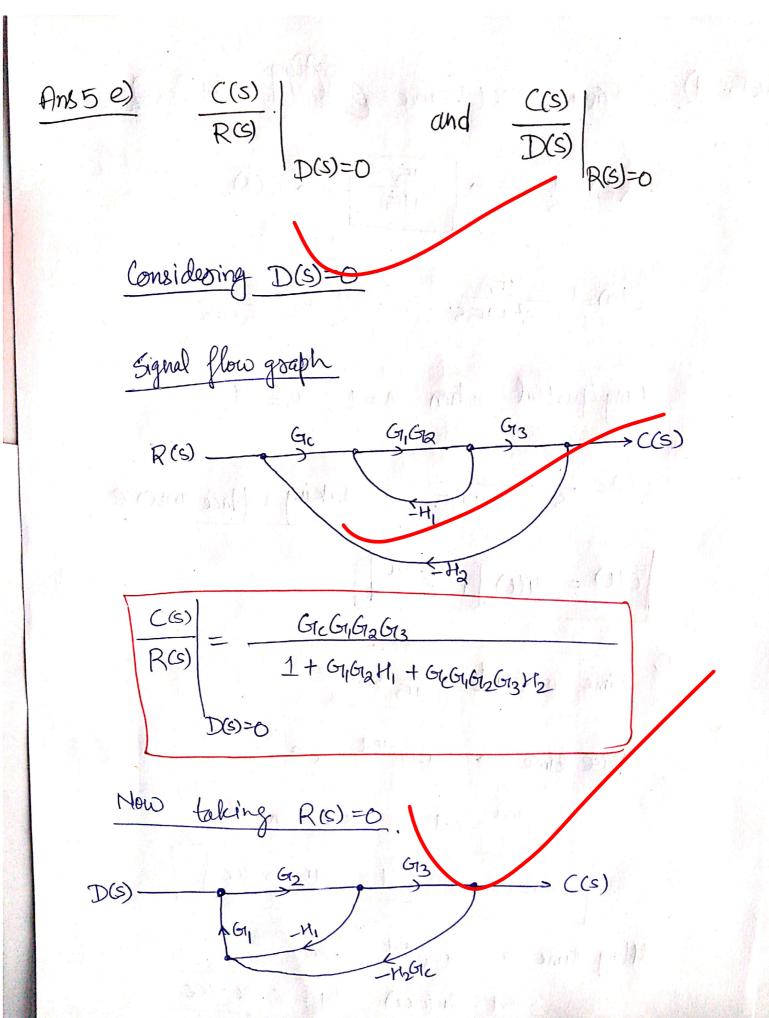
$$e^{-15t} = 0.1$$
 -15t = ly(0.1)

Rise time = 1=01535 sec

Settling time = 1-e15t = 0.98

$$-15t = ln(0.02)$$

-15t = in (0.02) -1 = 0.26 sec



$$\frac{C(s)}{D(s)} = \frac{G_{12}G_{13}}{1 + G_{1}G_{12}G_{13$$

Here Townsfor functions are calculated
by using Mason's Grain formula.

$$\frac{C}{R} = \frac{\sum_{k=1}^{n} P_k \Delta_k}{\Lambda}$$

P_K = Forward path Gain

$$\Delta_{K} = \Delta_{corresponding} \text{ for } P_{K}$$
 $\Delta' = 1 - \left(\frac{\text{Sum of loops}}{\text{total loops}} \right) + \left(\frac{\text{Sum of two non-touching}}{\text{loops}} \right)$

- $\left(\frac{\text{Sum of three non-touching loops}}{\text{loops}} \right) + \dots$

Ans 6 a)
$$T(s) = \frac{73.626}{(s+3)(s^2+4s+24.542)}$$

Unit etep response CCS).

$$((s) = \frac{73.626}{5 (s+3) (s^2 + 4s + 24.542)}$$

$$C(s) = \frac{A}{S} + \frac{B}{S+3} + \frac{CS+D}{(S+2)^2 + 20.542}$$

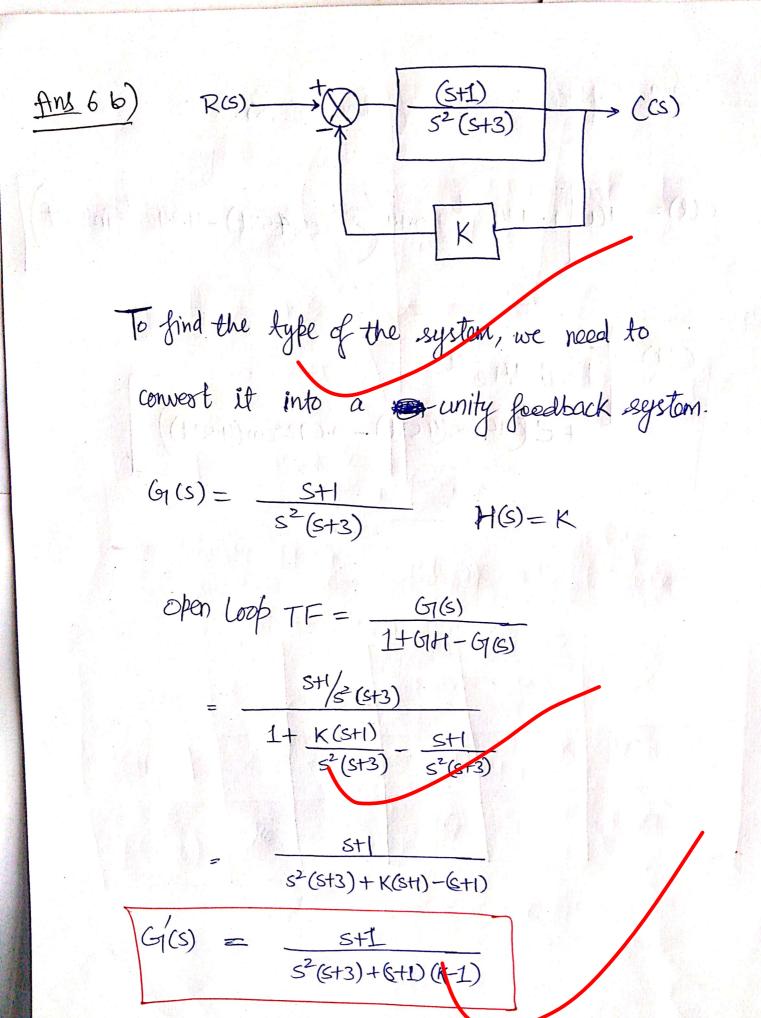
$$A=1$$
 $B=-1.14$ $C=0.14$ $D=-2.856$

$$C(s) = \frac{1}{s} = \frac{1.14}{5+3} + \frac{0.14s - 2.856}{(5+2)^2 + 20.542}$$

$$=\frac{1}{5}-\frac{1.14}{5+3}+0.14\left[\frac{5-20.4}{(5+2)+20.542}\right]$$

$$(s) = \frac{1}{s} - \frac{1.14}{s+3} + 0.14 \left[\frac{s+2}{(s+2)^2 + 20.542} - (4.94) \frac{4.532}{(s+2)^2 + 20.542} \right]$$

Taking Laplace invoise of the C(S). $C(t) = u(t) \left[1 - 1.14e^{-t} + 0.14 \left(e^{2t} \cos(4.53t) - 4.94e^{-2t} \sin(4.53t) \right) \right]$ $C(t) = \begin{cases} 1 - 1.14e^{-3t} \\ + e^{2t} \cdot 14(es(4.53t) - 0.692Sin(4.53t)) \end{cases}$



From G1'(s) Type of System =0

(i) For
$$C_{35} = 0.001$$
 when $R(S) = \frac{1}{5}$ $K = \frac{2}{5}$

(c) $C_{35} = 0.001$ when $R(S) = \frac{1}{5}$ $K = \frac{2}{5}$

(c) $C_{35} = 0.001$ when $R(S) = \frac{1}{5}$ $K = \frac{2}{5}$

(c) $C_{35} = 0.001$

(d) $C_{35} = 0.001$

(e) $C_{35} = 0.001$

(f) $C_{35} = 0.001$

(g) C_{35

Scanned with CamScanner

Ans6	Ċ

2) A/c to Nygmist criteria, N=P-Z

N= 00. of encirclements by Nyquist plot of of (-1,0) point.

P = RHS foles of Open loop Transfer fun".

Z = RHS zoros of characteristic egn

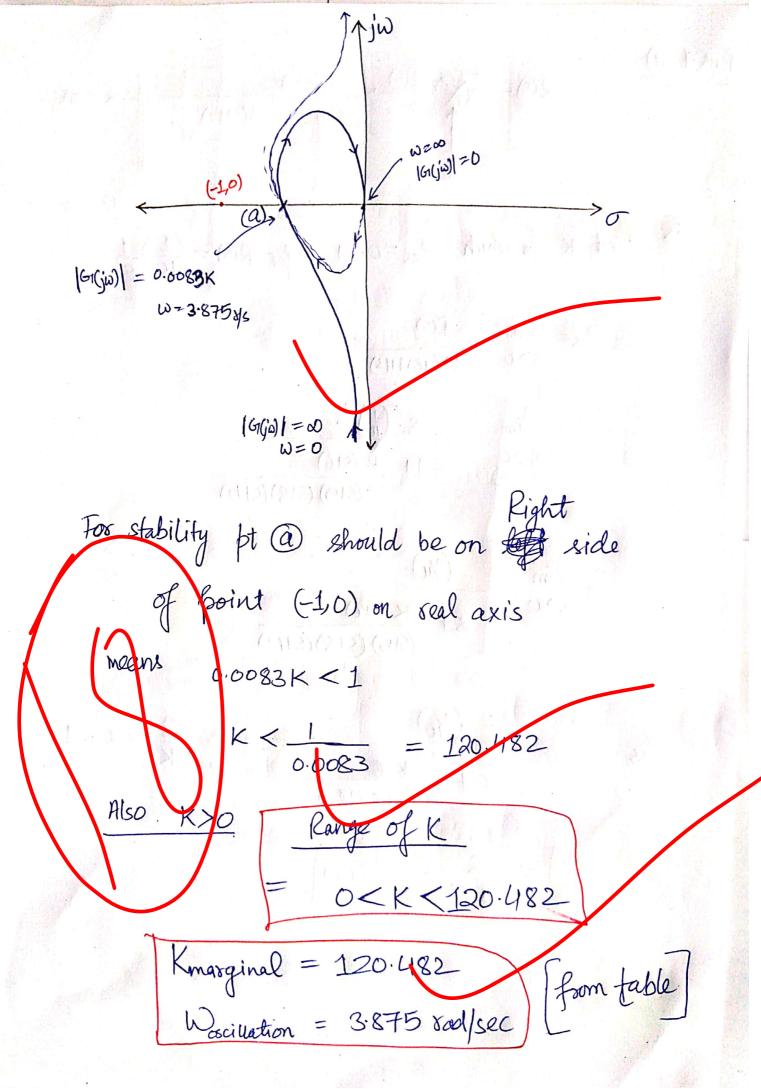
|G(jw)| = N |W | w2+9- | w2+25

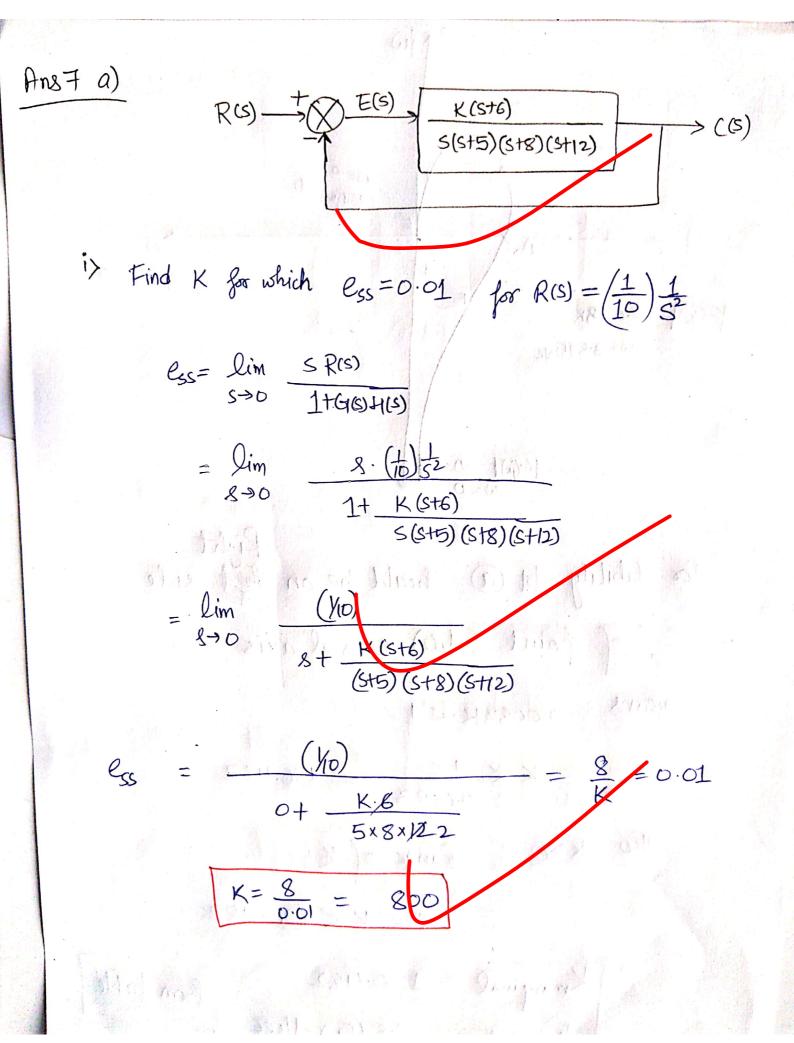
 $LG_{1}(j\omega) = -90 - tan'(\omega/3) - tan'(\omega/5)$

	W	0	1	3.875	19	∞
	(ia)	8	0.062	0.0083K	0.00085K	0
-	LG(ja)	-90	-120	-180°	-226.7°	+90°

P=0 For stability Z=0

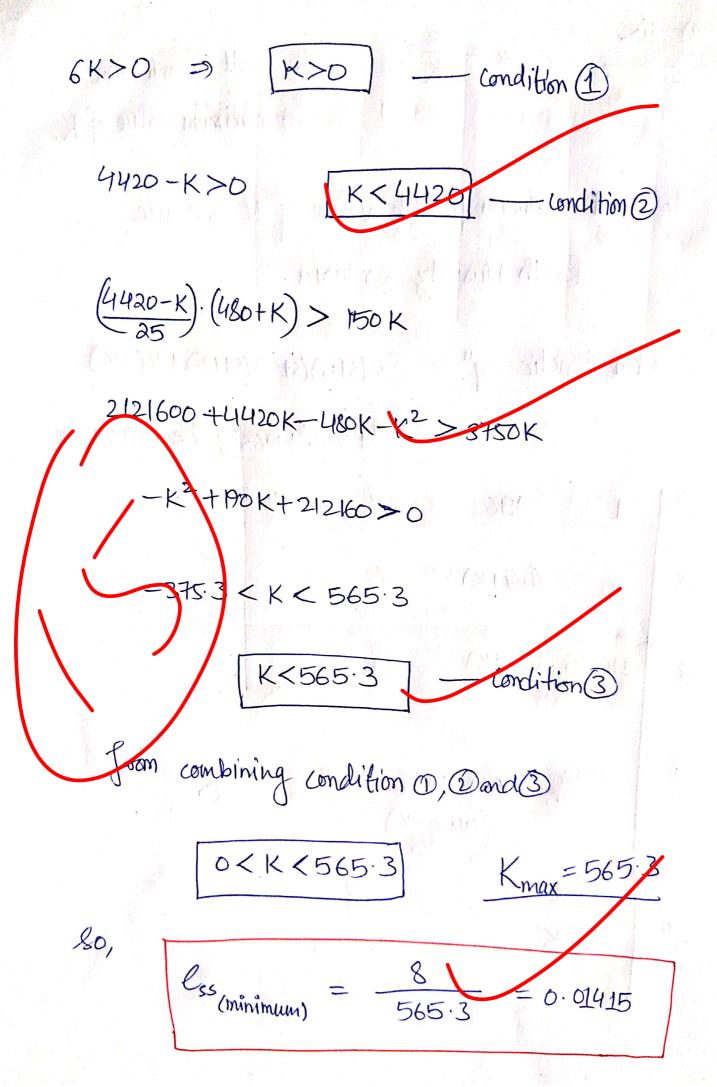
means [N=0] there should be no encirclements of (-1,0) ft.





Anst a) 11> To find maximum possible value of k we use Routh Huswitz coitesia. Mary & (270) (2 900) Characteristic eqⁿ = S(8+5)(S+8)(S+12) + K(S+6)= 54+2553+19652+(480+K)S+6K 196 6K 100 19191 (480+K) 196x25 - (480+K) SZ (4420-K) x(480+K) - 150K

(B) Margin



Bandwidth is that frequency at which Magnitude becomes $\frac{1}{\sqrt{2}}$ of its peak value.

Let
$$C(s) = T(s) = \frac{\omega_n}{R(s)}$$

$$|T(S)| = \frac{\omega_n^2}{-\omega^2 + j a \leq \omega_n \cdot \omega + \omega_n^2}$$

$$|T(j\omega)| = \frac{|\omega_n^2|}{|(\omega_n^2 - \omega^2)^2 + (2\xi\omega_n\omega)^2} = \frac{1}{\sqrt{2}} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2}$$

$$\frac{1}{\sqrt{12}} = \frac{\omega_n^2}{\sqrt{(\omega_n^2 - \omega^2)^2 + (2\xi\omega_n\omega)^2}} \qquad DC value = 1$$

$$(\omega_{n}^{2} - \omega^{2})^{2} + 4\xi^{2}\omega_{n}^{2}\omega^{2} = 2\omega_{n}^{4}$$

$$\omega_n^4 + \omega^4 - 2\omega_n^2 \omega^2 + 4\frac{1}{3}\omega_n^2 \omega^2 = 2\omega_n^4$$

$$\omega^4 - 2\omega^2 \omega_n^2 (1 - 2\xi^2) = \omega_n^4 = 0$$

Let
$$w' = x^2$$
 $w^2 = x$
 $w^2 = x$

$$20 \text{ of } x = \frac{1}{1 + 2\omega_{1}^{2}(1 - 2\delta_{2}^{2})} + \frac{1}{1 + 2\omega_{1}^{2}(1 + 4\omega_{2}^{2} - 4\delta_{2}^{2}) + 4\omega_{1}^{2}}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\omega_{1}^{2}(4\delta_{2}^{2} - 4\delta_{2}^{2} + 2)}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\omega_{1}^{2}(4\delta_{2}^{2} - 4\delta_{2}^{2} + 2)}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\omega_{1}^{2}(4\delta_{2}^{2} - 4\delta_{2}^{2} + 2)}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} - 4\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} + 2}$$

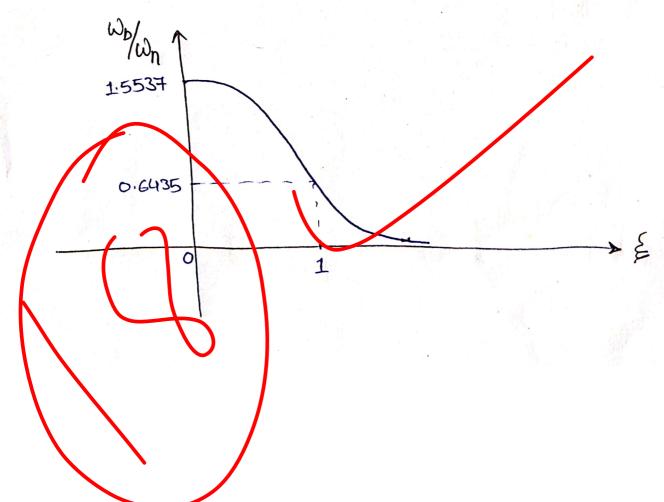
$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 - 2\delta_{2}^{2}) + \frac{1}{1 + 2\delta_{2}^{2} + 2}$$

$$= \omega_{1}^{2}(1 -$$

Wb	1.5537	1-272	1.0)	0.6435	0205	0.05
$\overline{\omega_n}$	13351	1.212		0135	2665	0.05
3	0	0.5	6.7	1	2	10



Ans 7 c)
$$A = \begin{bmatrix} -1 & -2 & -2 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{bmatrix}$$
 $B = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$

$$C = \begin{bmatrix} 1 & 10 \end{bmatrix}$$
For Controllability, we find 100 lad.

$$Q_{c} = \begin{bmatrix} B & AB & A^{2}B \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 1 & -4 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & -5 \end{bmatrix}$$

$$|Q_c| = 2(-5) + 4(0) + 0 = -10 + 0$$

As IQc1 = 0 System is controllable

Now for Observability we find | Qo!

$$a_0 = \begin{bmatrix} 1 & -1 & 0 \\ 1 & -3 & 5 \\ 0 & -1 & 0 \end{bmatrix}$$

$$|Q_0| = 1(0+5)+1(0)+0 = 5 \neq 0$$

Ax 190 | = 0 System is Observable

System is both Controllable and Observable