

MADE EASY

India's Best Institute for IES, GATE & PSUs

Test Centres: Delhi, Hyderabad, Bhopal, Jaipur, Pune, Kolkata

ESE 2025 : Prelims Exam | GS & ENGINEERING | CLASSROOM TEST SERIES | APTITUDE

Test 1

Section A: Reasoning & Aptitude [All Topics]Section B: Engineering Mathematics [All Topics]

				AN	SWER KEY				
1.	(c)	11.	(c)	21.	(b)	31.	(a)	41.	(c)
2.	(c)	12.		22.	(b)	32.	(a)	42.	
3.	(c)	13.	(a)	23.	(c)	33.	(a)	43.	(a)
4.	(b)	14.	(a)	24.	(a)	34.	(a)	44.	(b)
5.	(c)	15.	(a)	25.	(d)	35.	(c)	45.	(c)
6.	(c)	16.	(b)	26.	(a)	36.	(a)	46.	(a)
7.	(b)	17.	(a)	27.	(c)	37.	(b)	47.	(a)
8.	(b)	18.	(c)	28.	(d)	38.	(d)	48.	(d)
9.	(b)	19.	(a)	29.	(b)	39.	(d)	49.	(c)
10.	(b)	20.	(b)	30.	(a)	40.	(a)	50.	(b)

Section A: Reasoning & Aptitude

1. (c)

Sum of the n terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$

$$= \left(1 - \frac{1}{2}\right) + \left(1 - \frac{1}{4}\right) + \left(1 - \frac{1}{8}\right) + \left(1 - \frac{1}{16}\right) + \dots$$

$$= n - \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + n \text{ terms}\right)$$

$$= n - \frac{\frac{1}{2}\left(1 - \frac{1}{2^n}\right)}{1 - \frac{1}{2}} = n + 2^{-n} - 1$$

2. (c)

Arrange the letters of the word COCHIN in the alphabetical order: CCHINO.

Number of words with the two C's occupying first and second place = 4!

Number of words starting with CH, CI, CN is 4! each.

Thus, number of words before the first word starting with CO = 4! + 4! + 4! + 4! = 96.

The word starting with CO found first in the dictionary is COCHIN. There are 96 words before COCHIN.

3. (c)

LCM of 12, 15 and 25 is 300.

6 digit smallest number divisible by 12, 15 and 25 is 100200.

Required remainder of $\frac{100200}{9}$ is 3.

4. (b)

Replacing symbols and using BODMAS rule, we get

Option (a): $12 \div 2 \times 3 - 8 + 1 = 6 \times 3 - 7 = 11$

Option (b): $11 + 2 - 4 \div 2 \times 1 = 13 - 2 = 11$

Option (c): $7-2+5 \div 5 \times 2 = 7-2+2=7$

Option (d): $5+6 \div 3-3 \times 1 = 5+2-3=4$

5. (c)

We can write, $7^{13} = (6+1)^{13}$

In binomial expansion, each term except 1^{13} is divisible by 6. Thus, when 7^{13} is divided by 6, it leaves remainder 1.

When $7^{13} + 1$ is divided by 6, it leaves remainder 1 + 1 = 2

$$|x|^{2} - 3|x| + 2 = 0$$

$$\Rightarrow |x|^{2} - |x| - 2|x| + 2 = 0$$

$$\Rightarrow [|x| - 2][|x| - 1] = 0$$

$$\Rightarrow |x| = 1 \text{ or } 2$$
or
$$x = \pm 1, \quad x = \pm 2$$

$$\therefore \text{ Number of solutions} = 4$$

7. (b)

$$x^2 + 11x + 50 = 0$$

If roots are α and β , we have

$$\alpha + \beta = -11, \ \alpha\beta = 50$$

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$

$$= \frac{(11)^2 - 2 \times 50}{50} = \frac{121 - 100}{50}$$

$$= \frac{21}{50} = 0.42$$

8. (b)

9. (b)

Let the length of race is *x*

Case I

Case II

$$\begin{array}{ccc} & & \downarrow & & \downarrow \\ & x-25 & x \\ & \text{Naresh} & \text{Ramesh} \end{array}$$

Let $V_{A^{\prime}}$, V_{R} and V_{N} be the speed of Aman, Ramesh and Naresh respectively. Thus,

$$\frac{v_A}{v_R} = \frac{x}{x - 48} \text{ and } \frac{v_A}{v_N} = \frac{x}{x - 68}$$

$$\frac{v_R}{v_N} = \frac{x - 48}{x - 68} \qquad \dots (i)$$

:.

Also, we have

$$\frac{v_R}{v_N} = \frac{x}{x - 25} \qquad \dots (ii)$$

From equation (i) and (ii), we can write

$$\frac{x}{x-25} = \frac{x-48}{x-68}$$
$$x = 240 \text{ m}$$

:.

The length of the race is 240 meters.

10. (b)

Let the initial bank balance of A, B and C be 10x, 12x and 5x, respectively. A transfer of ₹60,000 makes a change of 3x in the ratio. Thus,

$$3x = 60000$$
 $x = 20000$
 $10x = ₹200000$

11. (c)

Given: Radius of cone, r = 5 cm

Height, h = 24 m

Radius of cylinder, $r_c = 10 \text{ cm}$

Volume of cone = $\frac{1}{3}\pi r^2 h = \frac{\pi}{3} \times 25 \times 24$

Volume of water in the cylinder = Volume of cone

$$\pi r_c^2 d = \frac{\pi}{3} \times 25 \times 24$$

Depth of water,
$$d = \frac{\frac{1}{3}\pi \times 25 \times 24}{\pi \times 100}$$
$$= \frac{25 \times 8}{100} = 2 \text{ cm}$$

12. (c)

Probability of an individual suffering from a particular disease,

$$p = \frac{20}{100} = 0.2$$

$$q = 1 - p = 0.8$$

Using binomial probability distribution, the probability that 2 individuals in a sample of 5 individuals would be suffering from disease is given by

$${}^{5}C_{2} \times q^{5-2} \times p^{2} = \frac{4 \times 5}{2} \times (0.512) \times (0.04) = 0.2048$$

13. (a)

Let rate upstream = x km/hand rate downstream = y km/hr

Then

$$\frac{40}{x} + \frac{55}{y} = 13$$
 ...(i)

and

$$\frac{30}{x} + \frac{44}{y} = 10$$
 ...(ii)

Multiplying (ii) by 4 and (i) by 3 and subtracting, we get

$$\frac{11}{y} = 1$$
$$y = 11$$

Substituting y = 11 in equation (i), we get

$$x = 5$$

Rate in still water = $\frac{1}{2}(11+5) = 8$ kmph

Rate of current = $\frac{1}{2}(11-5) = 3$ kmph

14. (a)

$$\angle ADC = 90^{\circ} \text{ and } \angle CDE = 60^{\circ}$$

$$\angle ADE = 90^{\circ} + 60^{\circ} = 150^{\circ}$$

ΔEDC is equilateral triangle

$$\therefore \qquad AD = DE$$

Since angles opposite to equal sides of a triangle are equal. Thus, in ΔADE ,

$$\angle DAE = \angle DEA = x$$

$$\angle ADE = \angle DAE + \angle DEA = 180^{\circ}$$

$$150 + x + x = 180^{\circ}$$

$$x = 15^{\circ}$$

15. (a)

Ways to choose first group =
$${}^{15}C_1 \times {}^{15}C_1 = 225$$

Ways to choose second group =
$$^{14}C_1 \times ^{14}C_1 = 196$$

Therefore, ways to make 15 groups =
$$15^2 + 14^2 + 13^2 + \dots + 1^2$$

= $\frac{15(15+1)(2\times15+1)}{6} = \frac{15\times16\times31}{6} = 1240$

Note, sum of square of first 'n' natural numbers

$$= \frac{n(n+1)(2n+1)}{6}$$

16. (b)

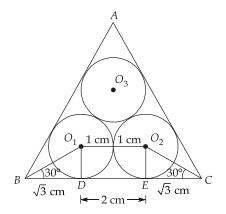
Arranging the data in ascending order: 2, 4, 6, 8, 10, 12, 14, 16

$$N = 8$$

$$\therefore \qquad \text{Median} = \frac{\left(\frac{N}{2}\right)^{th} \operatorname{term} + \left(\frac{N}{2} + 1\right)^{th} \operatorname{term}}{2}$$
$$= \frac{4^{th} + 5^{th}}{2} = \frac{8 + 10}{2} = 9$$

17. (a)

Since, tangents drawn from an external point to the circle subtends equal angle at the centre.



$$\angle O_1BD = 30^\circ$$

$$\tan 30^\circ = \frac{O_1D}{BD}$$

$$\Rightarrow \qquad BD = \sqrt{3} \text{ cm} \qquad [\because O_1D = \text{Radius of coin} = 1 \text{ cm}]$$
Also,
$$DE = O_1O_2 = 2 \text{ cm and } EC = \sqrt{3} \text{ cm}$$
Thus,
$$BC = BD + DE + EC$$

$$= 2 + 2\sqrt{3}$$
Area of $\triangle ABC = \frac{\sqrt{3}}{4}(BC)^2 = \frac{\sqrt{3}}{4} \times 4(1 + \sqrt{3})^2$

$$= (6 + 4\sqrt{3}) \text{ square cm}$$

18. (c)

Part of cistern filled by A, B and C together in 1 hour = $\frac{1}{6}$

$$\therefore$$
 For the first 2 hours, filled portion = $2 \times \frac{1}{6} = \frac{1}{3}$

The remaining part of cistern filled by A and B together in 1 hour = $\frac{1}{8}$

$$1 - \frac{1}{3} = \frac{2}{3} \text{ part of cistern is filled in 8 hours}$$

$$\therefore A + B \text{ can fill the cistern in } \frac{8 \times 3}{2} = 12 \text{ hours}$$

We have,
$$\frac{1}{A} + \frac{1}{B} + \frac{1}{C} = \frac{1}{6}$$

$$\Rightarrow \frac{1}{12} + \frac{1}{C} = \frac{1}{6}$$

$$\Rightarrow C = 6 \text{ hour}$$

19. (a)

Number of candidates who failed in at most two subjects = Candidates failed in one subject + candidates failed in two subjects

$$= (25 + 50 + 25) + (12 + 15 + 15) = 142$$
Required percentage
$$= \left(\frac{142}{300} \times 100\right)\% = 47.33\%$$

20. (b)

Required percentage =
$$\frac{70+80}{95+110} \times 100 = \frac{150}{205} \times 100 = 73.17$$

21. (b)

Average sales of branches B_1 , B_2 and B_3 in 2001

$$= \frac{1}{3} \times (105 + 65 + 110) = \frac{280}{3}$$

Average sales of branches B_1 , B_3 and B_6 in 2000

$$= \frac{1}{3} \times (80 + 95 + 70) = \frac{245}{3}$$

Required percentage =
$$\frac{245/3}{280/3} \times 100 = \frac{700}{8} = 87.5\%$$

22. (b)

The series is:

$$2^3 + 1^2 = 9$$
 $3^3 + 2^2 = 31$

$$4^3 + 3^2 = 73$$
 $5^3 + 4^2 = 141$

$$6^3 + 5^2 = 241$$

23. (c)

The relative velocity between any two bodies moving in opposite directions is equal to sum of the velocities of two bodies. We have,

Speed =
$$\frac{\text{Distance}}{\text{Time}}$$

$$v + 8 = \frac{250}{15} \times \frac{18}{5}$$

$$v = 52 \,\mathrm{km/hr}$$

24. (a)

Volume of the cylinder =
$$\pi r^2 h = \frac{22}{7} \times 7 \times 7 \times 20 = 3080 \,\mathrm{cm}^3$$

If h' is the height upto which the cuboidal box is filled with liquid, we have

Volume of the liquid transferred to cuboidal box = $3080 \times 0.9 = 2772 \text{ cm}^3$

$$15 \times 8 \times h = 2772$$

$$h = 23.1 \text{ cm}$$

25. (d)

If T is son, then it has to be male; (a) and (b) suggest T is a female; while (c) does not tell us whether T is a male or female. As per (d), T is brother of S where T and S are children of Q and R, which implies T is son of Q. Hence, option (d) is correct.

MADE EASY

Section B: Engineering Mathematics

26. (a)

$$\frac{d^2y}{dx^2} - \frac{3dy}{dx} + 2y = e^{5x}$$
$$(D^2 - 3D + 2)y = e^{5x}$$
$$(D - 1)(D - 2)y = e^{5x}$$

Thus, the auxiliary equation is (m-1)(m-2)=0 with roots as m=1, 2.

$$C.F. = C_1 e^x + C_2 e^{2x}$$

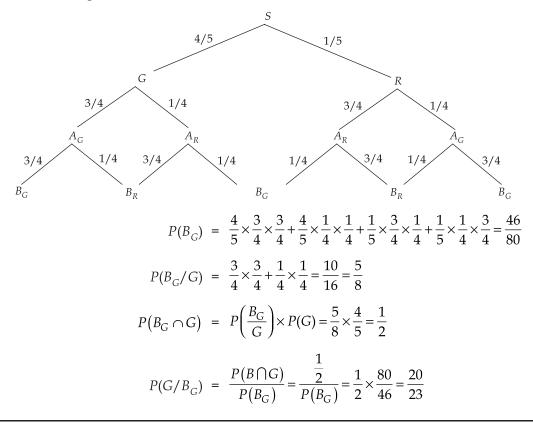
$$P.I. = \frac{1}{(D-1)(D-2)} e^{5x}$$

$$= \frac{e^{5x}}{(5-1)(5-2)} = \frac{e^{5x}}{12} \qquad \left[\because P.I. = \frac{1}{f(D)} e^{ax} = \frac{e^{ax}}{f(a)} \right]$$

$$\therefore \qquad y = C.F. + P.I. = C_1 e^x + C_2 e^{2x} + \frac{1}{12} e^{5x}$$

27. (c)

From the tree diagram, it follows that



:.

28. (d)

Consider the diagonal matrices D_1 and D_2 as below,

$$D_1 = \begin{bmatrix} a_{11} & & \\ & a_{22} & \\ & & \ddots & \\ & & & a_{nn} \end{bmatrix}$$

$$D_2 = \begin{bmatrix} I_{11} & & \\ & I_{22} & \\ & & \ddots & I_{nn} \end{bmatrix}$$

then

$$D_1 + D_2 = \begin{bmatrix} a_{11} + I_{11} & & & \\ & a_{22} + I_{22} & & \\ & & a_{nn} + I_{nn} \end{bmatrix}$$
 is a diagonal matrix

$$D_1D_2 = \begin{bmatrix} a_{11}I_{11} & & \\ & a_{22}I_{22} & \\ & & \ddots & \\ & & & a_{nn}I_{nn} \end{bmatrix}$$
 is a diagonal matrix

$$D_1^2 = \begin{bmatrix} a_{11}^2 & & \\ & a_{22}^2 & \\ & & \ddots & \\ & & & a_{nn}^2 \end{bmatrix}$$

 \therefore $D_1^2 + D_2^2$ is also a diagonal matrix.

29. (b)

Let

$$I = \int \frac{dx}{1 + \cos x}$$

We know that

$$1 + \cos x = 2\cos^2\frac{x}{2}$$

So the integral simplifies to

$$I = \int \frac{dx}{2\cos^2\frac{x}{2}}$$

$$I = \frac{1}{2} \int \sec^2 \frac{x}{2} dx$$

Let $u = \frac{x}{2}$, so $du = \frac{dx}{2}$, and the integral becomes

$$I = \frac{1}{2} \int \sec^2 u \cdot 2du$$

Since
$$\int \sec^2 du = \tan u$$
, we get

$$I = \tan u$$

Thus, the integral simplifies to

$$I = \tan \frac{x}{2}$$

Evaluating from $x = \frac{\pi}{4}$ to $x = \frac{3\pi}{4}$, we get

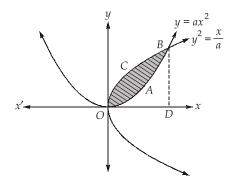
$$I = \tan \frac{3\pi}{8} - \tan \frac{\pi}{8}$$

Using the known values:

$$\tan \frac{3\pi}{8} = 1 + \sqrt{2}, \tan \frac{\pi}{8} = \sqrt{2} - 1$$

$$I = (1+\sqrt{2})-(\sqrt{2}-1)=2$$

Area enclosed between the curves is OABCO.



Thus, the point of intersection of $y = ax^2$ and $x = ay^2$ is given by

$$x = a(ax^2)^2$$

$$x = 0, \frac{1}{a}$$

$$y = 0, \frac{1}{a}$$

 \Rightarrow

So, the points of intersection are (0, 0) and $(\frac{1}{a}, \frac{1}{a})$

:. Required area OABCO = Area of curve OCBDO - Area of curve OABDO

$$\int_{0}^{1/a} \left(\sqrt{\frac{x}{a}} - ax^2 \right) dx = 1$$

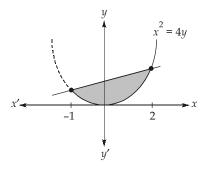
$$\left[\frac{1}{\sqrt{a}} \times \frac{x^{3/2}}{3/2} - \frac{ax^3}{3}\right]_0^{1/a} = 1$$

$$\frac{2}{3a^2} - \frac{1}{3a^2} = 1$$

$$a = \frac{1}{\sqrt{3}}$$

31. (a

The point of intersection of the curves $x^2 = 4y$ and x = 4y - 2 sketched below can be obtained as x = -1 and x = 2.



:.

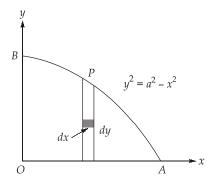
Required area
$$= \int_{-1}^{2} \left\{ \frac{(x+2)}{4} - \left(\frac{x^2}{4}\right) \right\} dx$$

$$= \frac{1}{4} \left[\frac{x^2}{2} + 2x - \frac{x^3}{3} \right]_{-1}^{2}$$

$$= \frac{1}{4} \left[\left(2 + 4 - \frac{8}{3} \right) - \left(\frac{1}{2} - 2 + \frac{1}{3} \right) \right]$$

$$= \frac{1}{4} \left[\frac{10}{3} - \left(-\frac{7}{6} \right) \right] = \frac{1}{4} \times \frac{9}{2} = \frac{9}{8} \text{ square unit}$$

32. (a)



The region of integration is the first quadrant of the circle *OAB*.

Assume

$$I = \iint_{R} xy \, dx \, dy$$
$$x^{2} + y^{2} = a^{2}$$
$$y = \sqrt{a^{2} - x^{2}}$$

First we integrate w.r.t. y and then w.r.t. x.

The limits for y are 0 and $\sqrt{a^2 - x^2}$ and for x, 0 at a. Thus,

$$I = \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} xydydx$$

$$= \int_{0}^{a} x \left[\frac{y^{2}}{2} \right]_{0}^{\sqrt{a^{2}-x^{2}}} dx$$

$$= \frac{1}{2} \int_{0}^{a} x (a^{2} - x^{2}) dx = \frac{1}{2} \left[\frac{a^{2}x^{2}}{2} - \frac{x^{4}}{4} \right]_{0}^{a}$$

$$= \frac{a^{4}}{8}$$

33. (a)

• The transpose of the product of the two matrices is the product of their transposes taken in the reverse order.

$$(AB)^T = B^T A^T$$

Every square matrix can be uniquely expressed as a sum of a symmetric and a skew-symmetric matrix.

Let A be the given square matrix then,

$$A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$$

where $A + A^T$ is a symmetrix matrix and $A - A^T$ is a skew-symmetric matrix.

Let B and C be the two inverses of matrix A. We have, AB = BA = I = AC = CA, then B = BI = B(AC)= (BA)C = IC = C.

- Inverse of a matrix, is unique.
- The inverse of the product of two matrices is the product of their inverse taken in the reverse order i.e.,

$$(AB)^{-1} = B^{-1}A^{-1}$$

Hence, only statements 1 and 2 are correct.

34. (a)

$$I + A = \begin{bmatrix} 1 & 1+2i \\ -1+2i & 1 \end{bmatrix}$$

$$|I + A| = 1 - (-1 - 4) = 6$$

$$(I + A)^{-1} = \frac{1}{6} \begin{bmatrix} 1 & -1-2i \\ 1-2i & 1 \end{bmatrix}$$
Also,
$$(I - A) = \begin{bmatrix} 1 & -1-2i \\ 1-2i & 1 \end{bmatrix}$$
Thus,
$$(I - A)(I + A)^{-1} = \frac{1}{6} \begin{bmatrix} 1 & -1-2i \\ 1-2i & 1 \end{bmatrix} \begin{bmatrix} 1 & -1-2i \\ 1-2i & 1 \end{bmatrix}$$

$$= \frac{1}{6} \begin{bmatrix} -4 & -2-4i \\ 2-4i & -4 \end{bmatrix} = \frac{1}{6}(-4I - 2A) = -\frac{1}{3}(2I + A)$$

35. (c)

Given that

$$|A^{10}| = 1024$$

$$|A^{10}| = 2^{10}$$

$$|A| = 2$$

$$-x^3 - 25 = 2$$

$$x^3 + 27 = 0$$

$$x^3 + 3^3 = 0$$

$$(x+3)(x^2 + 3x + 3^2) = 0$$

 \therefore The real value of x is -3.

36. (a)

$$\lim_{x \to 0} \frac{\sin 2x + a \sin x}{x^3} = b$$

By L'Hospital rule,

$$\lim_{x \to 0} \frac{2\cos 2x + a\cos x}{3x^2} = b$$

For *b* to be finite,

$$2 + a = 0$$

:.

$$a = -2$$

By L'Hospital rule,

$$\lim_{x \to 0} \frac{-4\sin 2x + 2\sin x}{6x} = b$$

Again applying L'Hospital rule,

$$\lim_{x \to 0} \frac{-8\cos 2x + 2\cos x}{6} = b$$

$$b = -1$$

$$a = -2 \text{ and } b = -1$$

$$a \times b = -2 \times -1 = 2$$

37. (b)

Since the function ($x\sin x$) is an even function in the interval [$-\pi$, π], hence the Trigonometric Fourier series coefficient, $b_n = 0$. Thus, Fourier series expansion of $x\sin x$ contains only cosine terms.

38. (d)

Number of integers between 100 and 999 = 900

In a three digit integer not containing the digit 7, first digit can be chosen in 8 ways (1 - 9 exclusing 7), second and third digit can be chosen in 9 ways (0 - 9 exclusing 7). Thus

Number of three digit integers which do not contain digit $7 = 8 \times 9 \times 9 = 648$

Required probability =
$$\frac{648}{900} = \frac{18}{25}$$

39. (d)

Since the failures of gates 2 and 3 are independent events, therefore

Required probability =
$$P(G_2 \cap G_3) = P(G_2)P(G_3)$$

= $0.2 \times 0.2 = 0.04$

40. (a)

X	1	2	3		
P(x)	$\frac{2+5P}{5}$	$\frac{1+3P}{5}$	1.5 + 2 <i>P</i> 5		

We have

$$\frac{2+5P}{5} + \frac{1+3P}{5} + \frac{1.5+2P}{5} = 1$$

$$P = 0.05$$

41. (c)

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{y/x - 1}$$

Since it is a homogenous differential, we put

$$\frac{y}{x} = v$$

$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$x \frac{dv}{dx} = \frac{v^2}{v - 1} - v = \frac{v^2 - v^2 + v}{v - 1} = \frac{v}{v - 1}$$

$$\left(1 - \frac{1}{v}\right) dv = \frac{dx}{x}$$

$$\int dv - \int \frac{1}{v} dv = \log x + \log c$$

$$v - \log v = \log x + \log c$$

$$\frac{y}{x} - \log y + \log x = \log x + \log c$$

$$\frac{y}{x} = \log (cy)$$

$$y = x \log cy$$

42. (a)

:.

The general from of 2nd order linear partial differential equation is given by

$$A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + f\left(x, y, u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right) = 0$$

The above equation is

• Parabolic if
$$B^2 - 4AC = 0$$

• Elliptic if
$$B^2 - 4AC < 0$$

• Hyperbolic if
$$B^2 - 4AC > 0$$

Given:

$$C^{2} \frac{\partial^{2} u}{\partial x^{2}} - \frac{\partial u}{\partial y} = 0$$

$$A = C^{2}; B = 0, C = 0$$

$$B^{2} - 4AC = 0 - 4 \times C^{2} \times 0 = 0$$

:. The equation is parabolic.

43. (a)

The area bounded by x-axis, lines x = 1, x = 5 and the curve y = f(x) is given by

$$\int_{1}^{5} y dx = \frac{h}{2} [y_0 + 2(y_1 + y_2 + y_3) + y_4]$$

$$= \frac{1}{2} [10 + 2(50 + 70 + 80) + 100] = \frac{1}{2} [10 + 400 + 100] = 255$$

44. (b)

Consider

$$f(z) = z^2 - z + 1$$

Using Cauchy's integral formula, if f(z) is an analytic function within and on curve c and if a' is any point within a, we have

$$\frac{1}{2\pi i} \int_{C} \frac{f(z)}{z - a} dz = f(a)$$

We have

$$a = 1$$

Now, a = 1 lies outside the circle $c: |z| = \frac{1}{2}$, so $\frac{z^2 - z + 1}{z - 1}$ is analytic every where within c,

.. By Cauchy's theorem,

$$\int_{C} \frac{z^2 - z + 1}{z - 1} dz = 0$$

Hence, option (b) is correct.

45. (c)

$$f(z) = \sin z, \quad f'(z) = \cos z,$$

$$f''(z) = -\sin z, \quad f'''(z) = -\cos z,$$

$$f(0) = 0, \qquad f'(0) = 1,$$

$$f''(0) = 0, \qquad f'''(0) = -1$$

 \therefore By Taylor's series expansion about, z = 0,

$$f(z) = f(0) + \frac{(z-0)}{1!}f'(0) + \frac{(z-0)^2}{2!}f''(0) + \frac{(z-0)^3}{3!}f'''(0) + \dots$$

$$\Rightarrow \qquad \sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} \dots$$

$$\therefore \qquad \text{Coefficient of } z^2 = 0$$

46. (a)

$$\frac{\partial z}{\partial x} = a^2 \qquad \frac{\partial z}{\partial y} = 2ay$$

$$\Rightarrow \qquad \left(\frac{\partial z}{\partial y}\right)^2 = 4a^2y^2$$

$$\left(\frac{\partial z}{\partial y}\right)^2 = 4y^2\left(\frac{\partial z}{\partial x}\right)$$

$$\Rightarrow \qquad 4y^2\left(\frac{\partial z}{\partial x}\right) - \left(\frac{\partial z}{\partial y}\right)^2 = 0$$

Hence, option (a) is correct.

47. (a)

$$\operatorname{Div} \vec{V} = \nabla \cdot \vec{V}$$

$$= \frac{\partial}{\partial x} (xy \sin z) + \frac{\partial}{\partial y} (y^2 \sin x) + \frac{\partial}{\partial z} (z^2 \sin xy)$$

$$= y \sin z + 2y \sin x + 2z \sin xy$$

Now, at the given point

$$x = 0, y = \frac{\pi}{2}, z = \frac{\pi}{2}$$

We have,

$$\operatorname{Div} \vec{V} = \frac{\pi}{2} \sin \frac{\pi}{2} + 2 \times \frac{\pi}{2} \sin 0 + 2 \cdot \frac{\pi}{2} \cdot \sin 0$$
$$= \frac{\pi}{2}$$

48. (d)

The auxiliary equation is

$$D^{3} - 2D^{2} + 4D - 8 = 0$$

$$(D - 2)(D^{2} + 4) = 0$$

$$D = 2, \pm 2i$$

The solution of differential equation is $y = C_1e^{2x} + C_2\sin 2x + C_3\cos 2x$

49. (c) Residue at z = 0 will be,

Residue =
$$\lim_{z \to 0} z \times \frac{1 + e^z}{z \left(\frac{\sin z}{z} + \cos z\right)} = \frac{1 + e^0}{1 + 1} = 1$$

50. (b)

 \Rightarrow

For Newton Raphson's method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$x = \sqrt{28}$$

$$f(x) = x^2 - 28$$

$$x^2 - 28 = 0 \text{ is the equation which is to be solved}$$

$$f'(x) = 2x$$

$$x_1 = 5.6 - \frac{x^2 - 28}{2x} \Big|_{x_0}$$

$$= 5.6 - \frac{5.6^2 - 28}{2 \times 5.6} = 5.30$$

CCCC