	DETAILED SOLUTIONS								
	Test Centres: Delhi, Hyderabad, Bhopal, Jaipur, Pune, Kolkata								
ES CL/	E 2025 Assro	:Р і ОМ	r elims TEST S	Exan ERIE	1 S	CIV ENGINE	'IL ERING	Te	st 2
		Secti	ion A : Geo Section	-technic B : Envir	cal & For ronment	undation En al Engineeri	gineering ng		
1.	(c)	17.	(a)	33.	(a)	49.	(d)	65.	(c)
2.	(a)	18.	(b)	34.	(b)	50.	(b)	66.	(b)
3.	(c)	19.	(d)	35.	(d)	51.	(a)	67.	(c)
4.	(b)	20.	(c)	36.	(d)	52.	(c)	68.	(d)
5.	(b)	21.	(b)	37.	(b)	53.	(c)	69.	(b)
6.	(a)	22.	(b)	38.	(a)	54.	(c)	70.	(a)
7.	(c)	23.	(d)	39.	(c)	55.	(d)	71.	(d)
8.	(b)	24.	(c)	40.	(d)	56.	(c)	72.	(d)
9.	(b)	25.	(b)	41.	(b)	57.	(d)	73.	(b)
10.	(c)	26.	(a)	42.	(d)	58.	(b)	74.	(c)
11.	(c)	27.	(c)	43.	(c)	59.	(b)	75.	(a)
12.	(c)	28.	(c)	44.	(c)	60.	(c)		
13.	(d)	29.	(c)	45.	(b)	61.	(c)		
14.	(c)	30.	(c)	46.	(b)	62.	(c)		
15.	(c)	31.	(b)	47.	(d)	63.	(d)		
16.	(c)	32.	(c)	48.	(c)	64.	(d)		

*Q.67 [Answer key has been updated]

DETAILED EXPLANATIONS

1. (c)

Soil classification as per plasticity index, I_p is given below.

I_P	Soil description		
0	Non plastic		
< 7	Low plastic		
7 – 17	Medium plastic		
> 17	Highly plastic		

2. (a)

A soil with a steeper flow curve i.e. having high flow index possesses lower shear strength.

3. (c)

- Sensitivity is measure of loss in strength of soils as a result of remoulding.
- Activity of a clay is defined as ratio of plasticity index and percentage by weight finer than 2µ.

4. (b)

Dry density of soil,
$$\rho_d = \frac{(1 - \eta_a)G\rho_w}{1 + Gw}$$

where η_a is percentage air voids

$$\rho_d = \frac{\rho}{1+w} = \frac{2}{1+0.2} = \frac{5}{3}g/cc$$
$$\rho_d = \frac{5}{3} = \frac{(1-\eta_a) \times 2.7 \times 1}{1+2.7 \times 0.2}$$

Hence,

 \Rightarrow

$$\frac{5\times1.54}{3\times2.7}=1-\eta_a$$

 $\Rightarrow \qquad \eta_a = \left(1 - \frac{77}{81}\right) \times 100$ $= \frac{400}{81}\%$

5. (b)

- Alluvial deposit Soils that have deposited from suspension in running water.
- Marine deposit-Soils that have been deposited from suspension in sea water.
- Aeolin deposit-Soils that have been transported by wind.
- 6. (a)
 - A soil on dry side of optimum has a higher water deficiency and can imbibe more water than wet side of optimum.
 - Permeability decreases sharply with increase in water content on dry side of optimum.

7. (c)

Given:

$$e_{\text{in-situ}} = 0.5$$

$$e_{\text{max}} = 0.8$$

$$e_{\text{min}} = 0.4$$
Now,
Relative density = $\left(\frac{e_{\text{max}} - e_{\text{in-situ}}}{e_{\text{max}} - e_{\text{min}}}\right) \times 100$

$$= \frac{0.8 - 0.5}{0.8 - 0.4} \times 100 = 75\%$$
Relative compaction = $\frac{\gamma_{d(\text{in-situ})}}{\gamma_{d(\text{max})}} = \frac{\left(\frac{G\gamma_w}{1 + e_{\text{in-situ}}}\right)}{\left(\frac{G\gamma_w}{1 + e_{\text{min}}}\right)} = \frac{1 + e_{\text{min}}}{1 + e_{\text{in-situ}}}$

$$= \left(\frac{1 + 0.4}{1 + 0.5}\right) \times 100 = \frac{1.4}{1.5} \times 100 = 93.33\%$$

8. (b) Compression and flow are assumed to be one-dimensional.

9. (b)

Given:

$$\Delta e = e_0 - e = 1.2 - 1.1 = 0.1$$

$$\Delta \overline{\sigma} = 0.75 - 0.5 = 0.25 \text{ kg/cm}^2$$

$$C_V = 10 \text{ m}^2/\text{year} = \frac{10 \times 10^4}{86400 \times 365} \text{ cm}^2/\text{sec}$$
Now, coefficient of permeability, $k = C_v m_v \gamma_w$

$$= C_v \times \frac{\Delta e}{\Delta \overline{\sigma} (1 + e_0)} \times \gamma_w$$

$$= \frac{10 \times 10^4}{86400 \times 365} \times \frac{0.1 \times 10^{-3}}{0.25 \times (1+1.2)} \times 1$$

= 5.7 × 10⁻⁷ cm/sec

10. (c)

- Even though most expansive soils are dark in colour, there are many swelling soils which are lighter in colour and even of brown colour.
- Pounded water will percolate only to a limited depth. The expansive soil at deeper levels will contribute to an enhanced level of swelling after the structure is erected.

- Greater the viscosity, lower is the permeability of soil.
- Dispersion effect causes the permeability to decrease, because of reduction in size of voids which is available for flow.

13. (d)

Gi

Given,

$$n = 50\%$$
, $G = 2.65$ and FOS = 3
Now,
 $e = \frac{n}{1-n} = \frac{0.5}{1-0.5} = 1$
Now permissible hydraulic gradient,

$$i = \frac{t_{cr}}{FOS}$$

= $\frac{1}{FOS} \left(\frac{G-1}{1+e} \right)$
= $\frac{1}{3} \left(\frac{2.65-1}{1+1} \right) = \frac{1.65}{3 \times 2} = 0.275$

15. (c)

Given:

$$\phi = 30^{\circ}, \gamma = 16 \text{ kN/m}^3, H = 6 \text{ m}$$
Now,
$$k_p = \frac{1 + \sin \phi}{1 - \sin \phi} = \frac{1 + \sin 30^{\circ}}{1 - \sin 30^{\circ}} = \frac{1 + (1/2)}{1 - (1/2)} = 3$$

Total passive earth pressure,
$$P_p = \frac{1}{2}k_p\gamma H^2$$

= $\frac{1}{2} \times 3 \times 16 \times 6^2$
= 864 kN/m

16. (c)

Earth pressure distribution is assumed to be triangular and point of application is taken at lower third point of wall.

17. (a)

ESP is quite different in case of over consolidated and normally consolidated clays.

19. (d)

For a given soil 'A' depends upon the strain, anisotropy, sample disturbance and over consolidation ratio.

20. (c)

Given,

21. (b)

As per Terzaghi's theory, Ultimate bearing ca

timate bearing capacity,
$$q_u = CN_C + \gamma D_f N_q + 0.5\gamma BN_\gamma$$

= $15 \times 30.1 + 18 \times 1 \times 18.4 + 0.5 \times 18 \times 1.2 \times 16.7$
= $451.5 + 331.2 + 180.36$
= 963.06 kN/m^2
= 963 kN/m^2

22. (b)

23.

24.

Factor of safety =
$$\frac{\text{Ultimate load capacity of pile}}{\text{Working load + Negative skin friction}}$$
Now, Ultimate load capacity of pile = $1382 - 300 + 478$
(: In top 3 m of pile, regative skin friction is there).
= 1560 kN
Negative skin friction = 300 kN
So, $3 = \frac{1560}{\text{Working load + 300}}$
 \Rightarrow Working load = $520 - 300 = 220 \text{ kN}$
(d)
As per Cl. 7.1.5 of IS 2911 : Part 4 (2013)
Safe vertical load on pile = Min. $\begin{bmatrix} \frac{2}{3} \times (\text{Load at which settlement is 12 mm}) \\ \text{or} \\ 0.5 \times (\text{Load at which displacement} \\ \text{is 10% of pile diameter}) \end{bmatrix}$
= $Min. \begin{bmatrix} \frac{2}{3} \times 235.7 = 157.1 \text{ kN} \\ 0.5 \times 450 = 225 \text{ kN} \end{bmatrix} = 157.1 \text{ kN}$
(c)
Allowable pile load, $Q_a = \frac{WH}{F(S+C)}$
For drop hammer, $F = 6$, $C = 2.5$

$$Q_a = \frac{50 \times 150}{6(0.5 + 2.5)} = 416.67 \text{ kN}$$

25. (b)

:.

Area ratio,
$$A_r = \frac{51^2 - 35^2}{35^2} \times 100$$

= $\frac{2601 - 1225}{1225} \times 100 = 112.33\%$

26. (a)

Contact pressure is uniformly distributed in flexible footing in clayey soil. Hence, a dish shaped pattern of settlement is obtained.

27. (c)

Depth of excavation,
$$H = \frac{c_u}{S_n F_c \gamma}$$

where
 $c_u = 50 \text{ kN/m}^2$,
 $S_n = 0.261$
 $F_C = 1$
 $\gamma = 20 \text{ kN/m}^3$
 $H = \frac{50}{0.261 \times 1 \times 20} = 9.578 \text{ m}$

28. (c)

As we know

$$\frac{\Delta H}{H} = \frac{\Delta e}{1 + e_0}$$
where

$$\Delta H = 1.5 \text{ mm},$$

$$H = 30 \text{ mm}$$

$$e_0 = 1.12$$

$$\therefore \qquad \frac{1.5}{30} = \frac{\Delta e}{1 + 1.12}$$

$$\Rightarrow \qquad \Delta e = \frac{1.5 \times 2.12}{30} = 0.106$$
Now,
Final void ratio, $e_f = e_0 - \Delta e$

$$= 1.12 - 0.106 = 1.014$$

29. (c)

As we know

	$G = \frac{1}{\frac{\rho_w}{\rho_d} - \frac{w_s}{100}}$ where w_s is shrinkage limit in%.
Now,	G = 2.7
	$\rho_d = \frac{430}{250} = 1.72 \text{ g/cc}, \rho_w = 1 \text{ g/cc}$
÷	$G = 2.7 = \frac{1}{\frac{1}{1.72} - \frac{w_s}{100}}$
\Rightarrow	$\frac{1}{1.72} - \frac{1}{2.7} = \frac{w_s}{100}$
\Rightarrow	$w_s = 21.1\% = 0.211$
Now,	weight of water, $W_w = w_s \times 430$
	$= 0.211 \times 430$
	= 90.73 gm
	$\simeq 90.7 \text{ gm}$

30. (c)

As 100% of soil is finer than 4.75 mm sieve, it is not gravel. As only 6% of soil is finer than 75μ sieve, it is coarse grained soil i.e. sand.

Now,

$$C_u = \frac{D_{60}}{D_{10}} = \frac{0.22}{0.16} = 1.375 < 6$$

$$C_C = \frac{D_{30}^2}{D_{10} \times D_{60}} = \frac{0.19^2}{0.22 \times 0.16} = 1.03$$

As $C_u < 6$, so sand is poorly graded i.e. SP.

Now, as the soil is non-plastic, sand will contain silt as fines i.e. SM. Hence its symbol is SP – SM.

32. (c)

Let, the height of water table be, h'

$$\Rightarrow$$

$$h = \frac{2\gamma_{sat}}{\gamma_w} = \frac{2 \times (G+e)}{(1+e)}$$
$$= 2 \times \left(\frac{2.75 + 0.8}{1+0.8}\right) = 3.94 \text{ m}$$

Now, depth of water table below ground surface = 10 - 3.94 = 6.06 m

 $2\gamma_{\text{sat}} = h\gamma_w$

33. (a)

As we know

Quantity of seepage,
$$q = \frac{kHN_f}{N_d}$$

where,
 $k = 5 \times 10^{-3} \text{ cm/s}$
 $= 5 \times 10^{-3} \times 86400 \times 10^{-2} = 4.32 \text{ m/day}$
 $H = 2 \text{ m}$
Number of flow channels, N_f = Number of flow lines $-1 = 5 - 1 = 4$
Number of equipotential drops, N_d = Number of equipotential lines $-1 = 11 - 1 = 10$
 \therefore $q = 4.320 \times 2 \times \frac{4}{10} = 3.456 \text{ m}^3/\text{day/m}$ length of pile

 $q (kN/m^2)$

34. (b)

Vertical stress at a depth z is given by

35. (d)

For laboratory sample

$$H_{1} = \frac{20}{2} = 10 \text{ mm}$$
 (Due to double drainage)

$$t_{1} = 10 \text{ minutes}$$

$$H_{2} = 10 \text{ m}$$
 (Due to single drainage)

For site

For same degree of consolidation $t_2 = ?$

$$\frac{t_1}{H_1^2} = \frac{t_2}{H_2^2}$$

$$t_2 = t_1 \times \frac{H_2^2}{H_1^2}$$

$$= \frac{10 \times 10000^2}{10^2} = 10^7 \text{ minutes}$$

36. (d)

 \Rightarrow

$$FOS = \frac{C + \gamma_{sub} Z \cos^2 \beta \tan \phi}{\gamma_{sub} Z \cos \beta \sin \beta}$$

For critical, height,

$$FOS = 1 \text{ and } Z = H_C$$

$$\therefore \qquad \gamma_{sub}H_C \cos\beta\sin\beta = C + \gamma_{sub}H_C \cos^2\beta\tan\phi$$

$$\Rightarrow \qquad C = \left(\gamma_{sub}H_C \cos^2\beta(\tan\beta - \tan\phi)\right)$$

$$\Rightarrow \qquad H_C = \frac{C}{m_c \cos^2\beta(\tan\beta - \tan\phi)}$$

$$H_C = \frac{1}{\gamma_{\rm sub}\cos^2\beta(\tan\beta - \tan\phi)}$$

38. (a)

Because of very high permeability of sand, it does not take much time for pore water to drain out. Due to this reason, any structure on a sandy soil experience very little settlement after it has been constructed.

39. (c)

$$k_0 = \frac{k\mu}{\gamma} = \frac{k\mu}{\rho g} = \frac{k\nu}{g}$$

41. (b)

As we know,

Where $\begin{aligned} N_1 V_1 &= N_2 V_2 \\ N_1 &= 0.01 \text{ N} \\ V_1 &= 60 \text{ mL} \end{aligned}$

Since, 1 mL of 0.02 N H_2SO_4 reacts with 1 mL of alkalinity as CaCO₃

$$\therefore \qquad \qquad N_2 = 0.02$$

Hence,
$$V_2 = \frac{N_1}{N_2} \times V_1 = \frac{0.01}{0.02} \times 60 = 30 \text{ mL}$$

:. Total alkalinity of water sample of 200 mL = 30 mg Total alkalinity of water sample in 1 L = $30 \times 5 = 150$ mg/l as CaCO₃

43. (c)

Volume of sample of sewage = 2.5 ml Volume of diluted sample = 250 ml

So, dilution factor = $\frac{250}{2.5} = 100$ Now, BOD of raw sewage = $(8 - 5) \times 100$

$$= 300 \text{ mg/l}$$

46. (b)

47. (d)

As we know, Where \therefore Power, $P = G^2 \mu V$ $G = 30 \operatorname{sec}^{-1}, \mu = 1.14 \times 10^{-3} \operatorname{Ns}/m^2, V = 250 \operatorname{m}^3$ $P = 30^2 \times 1.14 \times 10^{-3} \times 250$ $= 256.5 \operatorname{Watts}$

48. (c)

Settling velocity,
$$V_t = \sqrt{\frac{4}{3} \frac{gd(G-1)}{C_D}}$$

where
 $C_D = 1.2$
 $d = 0.5 \text{ mm} = 5 \times 10^{-4} \text{ m}$
 $G = 2.62$
 $g = 9.81 \text{ m/s}^2$
 \therefore
 $V_t = \sqrt{\frac{4 \times 9.81 \times 5 \times 10^{-4} \times (2.62 - 1)}{3 \times 1.2}}$
 $= (\sqrt{9 \times 9.81}) \times 10^{-2}$
 $= 9.396 \times 10^{-2} \text{ m/s}$
 $\simeq 94 \text{ mm/s}$

51. (a)

- An example of ionic layer compression occurs in nature when a turbid stream flows into ocean. There, the ion content of water increases drastically and coagulation and settling occur.
- The nature, rather than quantity of ions is of importance in theory of adsorption and charge neutralization.

52. (c)

- All forms of carbonate hardness as well as magnesium non-carbonate hardness can be converted to precipitating species by addition of lime.
- Complete removal of hardness cannot be accomplished in this method.
- The optimum pH for CaCO₃ precipitation by lime addition is from 9 to 9.5.
- The optimum pH for Mg(OH) , precipitation requires a pH of about 11.

53. (c)

Hypochrous acid is more effective than hypochlorite ions by approximately two orders of magnitude.

54. (c)

Refer Table 1 and 2 of IS 10500 : 2012.

55. (d)

	Surface area required, $A_s = \frac{5 \times 10^6 \times 10^{-3}}{40} = 125 \text{ m}^2$
Now,	volume of tank required, $V = A_s \times \text{depth of tank}$ = 125 × 3 = 375 m ³

MADE EDS

57. (d)

> Quantity of sewage produced = 5 MLD $= 5000 \text{ m}^3/\text{day}$

Area of farmland required for immediate need = $\frac{150}{1.5}$ = 100 hectares

(excluding extra provision of rest and rotation)

Consuming capacity of soil = $\frac{5000}{100}$ = 50 m³/hectares/day

59. (b)

Nitrogenous organic matter gets oxidised to ammonia, then to nitrites and finally to nitrates, which is then consumed by plants, through photosynthesis to form plant proteins.

60. (c)

Relative stability, $S = 100[1 - (0.794)^{t_{20}}]$ at 20°C and S = $100[1 - (0.794)^{t_{37}}]$ at 37°C

where t_{20} and t_{37} represent the time in days for a sewage sample to decolorize a standard volume of methylene blue solution when incubated at 20°C or 37°C respectively.

61. (c)

Total daily BOD produced by system = $1000 \times 75 = 75000$ gm Standard per capita BOD = 50 gm

Now, population equivalent = $\frac{75000}{50} = 1500$

24

67. (c)

- **Specific yield:** It is defined as the volume of water released from storage by an unconfined aquifer per unit surface area of aquifer per unit decline of the water table.
- **Specific Capacity:** It is defined as the rate of flow through the well per unit drawdown that has determined for initial first meter fall of water in well.
- **Specific storage:** It is the amount of water that a portion of an aquifer releases from storage, per unit mass or volume of aquifer, per unit change in hydraulic head, while remaining fully saturated.

68. (d)

Given,

$$Q = 0.004 \text{ m}^3/\text{s} = 14.4 \text{ m}^3/\text{hr}, \ s = 3 \text{ m}, \ \frac{c'}{A} = 1 \text{ m}^3/\text{hr}/\text{m}^2/\text{m}$$

Now,	$Q = \left(\frac{c'}{A}\right) \times A \times s$	where A is area of well.
\Rightarrow	$14.4 = 1 \times A \times 3$	
\Rightarrow	$A = 4.8 \text{ m}^2$	
\Rightarrow	$\frac{\pi}{4}d^2 = 4.8$	
⇒	$d = \sqrt{\frac{4.8 \times 4}{\pi}} = 2.4$	7 m

70. (a)

- Organic ammonia indicates pollution and presence of undecomposed organic matter.
- Nitrites indicate the partly oxidised organic matter.
- Nitrates indicate the fully oxidised organic matter.

71. (d)

This formula is based on the fact that volume of this type of circular tank used for sedimentation i.e. the one having a cone shaped bottom with 1 : 1 slope, is found to have a volume equal to $d^2(0.011d + 0.785H)$

73. (b)

 \Rightarrow

As per the National Board of Fire Underwriters formula.

$$Q(\text{in lit/min}) = 4637\sqrt{P}(1 - 0.01\sqrt{P})$$
$$Q(\text{in m}^3/\text{day}) = 4637 \times 10^{-3} \times 60 \times 24\sqrt{P}(1 - 0.01\sqrt{P})$$
$$= 6677.28\sqrt{P}(1 - 0.01\sqrt{P})$$

©Copyright: MADE EASY