S.No.: 04SKCE_GHIJ_130924

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

GENERAL APTITUDE

CIVIL ENGINEERING

Date of Test: 13/09/2024

ANSWER KEY ➤

1.	(d)	7.	(d)	13.	(c)	19.	(b)	25.	(a)
2.	(c)	8.	(c)	14.	(a)	20.	(d)	26.	(c)
3.	(b)	9.	(b)	15.	(c)	21.	(b)	27.	(d)
4.	(b)	10.	(b)	16.	(b)	22.	(d)	28.	(c)
5.	(d)	11.	(b)	17.	(d)	23.	(a)	29.	(b)
6.	(b)	12.	(c)	18.	(c)	24.	(c)	30.	(c)

DETAILED EXPLANATIONS

1. (d)

The possibilities are:

4 from part A and 6 from part B.

or 5 from part A and 5 from part B.

or 6 from part A and 4 from part B.

Therefore, the required number of ways is

$${}^{6}C_{4} \times {}^{7}C_{6} + {}^{6}C_{5} \times {}^{7}C_{5} + {}^{6}C_{6} \times {}^{7}C_{4} = \frac{6!}{4! \times 2!} \times \frac{7!}{6! \times 1!} + \frac{6!}{5! \times 1!} \times \frac{7!}{5! \times 2!} + \frac{6!}{6!} \times \frac{7!}{4! \times 3!} = 105 + 126 + 35 = 266$$

2. (c)

Series follows the pattern,

$$a_{n+1} = a_n \times a_{n+2}$$

$$a_2 = 4 = 2 \times 2$$

$$a_3 = 2 = 4 \times 0.5$$

$$a_4 = 0.5 = 2 \times 0.25$$

$$a_5 = 0.25 = 0.5 \times 0.5$$

$$a_6 = 0.5 = 0.25 \times x$$

$$x = \frac{0.5}{0.25} = 2$$

3. (b)

 \Rightarrow

We note that there are 3 consonants M, C and T and 3 vowels E, A and O. Since no two vowels have to be together the possible choice for vowels are the places marked as 'X'.

XMXCXTX,

These vowels can arranged in 4P_3 ways and 3 consonants can be arranged in 3! ways. Hence, the required number of ways = $3! \times {}^4P_3$

$$= 3! \times \frac{4!}{1!} = 144$$

4. (b)

$$x + \frac{1}{x} = 2$$

$$\Rightarrow \qquad x^2 + \frac{1}{x^2} + 2 = 4$$

$$\Rightarrow \qquad x^2 + \frac{1}{x^2} = 2$$

$$\Rightarrow \qquad x^4 + \frac{1}{x^4} + 2 = 4$$

$$\Rightarrow \qquad x^4 + \frac{1}{x^4} = 2$$

5. (d)

Series is following given pattern,

$$1 \times 7 + 17 = 24$$

 $2 \times 4 + 24 = 32$
 $3 \times 2 + 32 = 38$
 $3 \times 8 + 38 = 62$
 $6 \times 2 + 62 = 74$
 $7 \times 4 + 74 = 102$

LCM of 3, 4, 6 and 12 = 12

$$\sqrt[3]{4} = \sqrt[12]{4^4} = \sqrt[12]{256}$$

 $\sqrt[4]{6} = \sqrt[12]{6^3} = \sqrt[12]{216}$
 $\sqrt[6]{17} = \sqrt[12]{17^2} = \sqrt[12]{289}$
 $\sqrt[12]{222} = \sqrt[12]{222}$
Smallest = $\sqrt[12]{216} = \sqrt[4]{6}$

$$\frac{2.32^{3} + 1.44^{3} + 2.88^{3} - 3 \times 2.32 \times 1.44 \times 2.88}{2.32^{2} + 1.44^{2} + 4 \times 1.44^{2} - 2 \times 1.44^{2} - 2.32 \times 1.44 - 2.32 \times 2.88}$$
$$\frac{2.32^{3} + 1.44^{3} + 2.88^{3} - 3 \times 2.32 \times 1.44 \times 2.88}{2.32^{2} + 1.44^{2} + 2.88^{2} - 2.88 \times 1.44 - 2.32 \times 1.44 - 2.32 \times 2.88}$$
$$\Rightarrow \frac{a^{3} + b^{3} + c^{3} - 3abc}{a^{2} + b^{2} + c^{2} - ab - bc - ca} = a + b + c$$
$$2.32 + 1.44 + 2.88 = 6.64$$

8. (c)

Work done by the waste pipe in 1 min = $\frac{1}{20} - \left(\frac{1}{30} + \frac{1}{36}\right) = -\frac{1}{90}$ (-ve means emptying)

∴ Volume of
$$\frac{1}{90}$$
 part = 50 litre

⇒ Volume of tank = $50 \times 90 = 4500$ litre

$$(x + y)$$
's one hour work = $\frac{1}{6} + \frac{1}{7.5} = \frac{3}{10}$
 $(x + z)$'s one hour work = $\frac{1}{6} + \frac{1}{10} = \frac{4}{15}$
Part filled in 2 hours = $\frac{3}{10} + \frac{4}{15} = \frac{17}{30}$
Part filled in 3 hours = $\frac{17}{30} + \frac{3}{10} = \frac{13}{15}$

Remaining part =
$$1 - \frac{13}{15} = \frac{2}{15}$$

 \Rightarrow (x + z) will take 30 mins to fill this part.

Total time required = 3 + 0.5 = 3.5 hours

10. (b)

Time from 4 pm on a day to 9 pm on the following day = 29 hours.

24 hrs 10 min of this clock = 24 hrs of the correct clock

29 hrs of this clock =
$$\frac{24 \times 29}{24\frac{1}{6}} = \frac{24 \times 29 \times 6}{145} = \frac{144}{5} = 28\frac{4}{5} = 28 \text{ hrs } 48 \text{ min}$$

 \Rightarrow 48 min past 8

11. (b)

Let the quantity of wine in the cast originally be x litres.

Then, quantity of wine left in the cast after 5 operation

$$= \left[x \left(1 - \frac{24}{x} \right)^5 \right]$$
litres

$$\therefore \frac{x\left(1-\frac{24}{x}\right)^5}{x} = \frac{32}{32+211} = \frac{32}{243}$$

$$\Rightarrow \qquad \left(1 - \frac{24}{x}\right)^5 = \left(\frac{2}{3}\right)^5$$

$$x = 72$$
 litres

12. (c)

 \Rightarrow

There are two serieses: (22, 16, 10, 4) and

$$(0, 9, 36, 81)$$

 $0^2, 3^2, 6^2, 9^2$

13. (c)

$$6 \times 6 - 0 = 36$$

 $36 \times 5 - 1 = 179$
 $179 \times 4 - 2 = 714$
 $714 \times 3 - 3 = 2139$
 $2139 \times 2 - 4 = 4274$

14. (a)

15. (c)
So,
$$(13^7 - 7^7) + (2^6 - 4^6)$$
, both are divisible by 6
 \Rightarrow Remainder = $-2 + 6 = 4$
 $(a^n - b^n)$ is divisible by $(a - b)$
 $(a^n - b^n)$ is divisible by $(a + b)$ if 'n' is even natural number

16. (b)

$$\begin{array}{c|ccccc}
7 & 729 & Remainder \\
\hline
7 & 104 & 1 \\
\hline
7 & 14 & 6 \\
\hline
7 & 2 & 0 \\
\hline
0 & 2
\end{array}$$

$$(729)_{10} = (2061)_{7}$$

17. (d)

$$SP = 1026$$
Profit = 14%
$$CP = \frac{1026}{1 + 0.14} = Rs.900$$

If it had been sold for 693 then,

$$Loss = 900 - 693 = Rs. 207$$

18. (c

Suppose, the quantity sold at loss be *y* kg.

Let CP per kg = x

Total SP =
$$1.1 \times (20 - y)x + 0.95 \times y \times x$$

= $(22 - 1.1y + 0.95y) \times x$
= $(22 - 0.15y) \times x = 1.08x \times 20$
 $22 - 0.15y = 21.6$
 $y = \frac{0.4}{0.15} = 2.67 \text{ kg}$

19. (b)

$$SI = 1062 - 750 = 312$$

$$312 = \frac{750 \times 3 \times R}{100} + \frac{750 \times 4 \times 5}{100}$$

$$R = 7.2\%$$

20. (d)

$$11880 = 2^3 \times 3^3 \times 5 \times 11$$

Sum of all factors =
$$\frac{(2^4 - 1)(3^4 - 1)(5^2 - 1)(11^2 - 1)}{(2 - 1)(3 - 1)(5 - 1)(11 - 1)}$$

$$= \frac{15 \times 80 \times 24 \times 120}{1 \times 2 \times 4 \times 10} = 43200$$

Since unity is excluded,

The net sum of all factors = 43200 - 1 = 43199

21. (b)

It will be along the longest diagonal,

$$d = \sqrt{40^2 + 56^2 + 13^2} = 70.0357 \,\mathrm{m}$$

22. (d)

Let equal sides of the isosceles triangle be x,

Then

$$x^2 + x^2 = 10^2$$
$$x = 5\sqrt{2} \text{ cm}$$

Final area =
$$8 \times \left(\frac{1}{8} \times \pi \times 10^2 - \frac{1}{2} 5\sqrt{2} \times 5\sqrt{2}\right)$$

= $\pi \times 10^2 - 4 \times 25 \times 2$
= $100\pi - 200$
Area = 114.16 cm^2

23. (a)

$$man \times day = 40 \times 400 = 16000$$
After 32 days \Rightarrow 32 × 400 = 12800
So, Remaining, man \times day = 3200
$$\therefore 80 \times Day = 3200$$

$$Day = 40 days$$

24. (c)

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta} = \frac{(\alpha + \beta)^2}{\alpha\beta} - 2$$
$$= \frac{(12/8)^2}{a/8} - 2 = \frac{144}{8a} - 2 = \frac{18}{a} - 2$$

Minimum value = -2 (When $a \rightarrow \infty$)

www.madeeasy.in

In this case,

26. (c)

$$B - 3 = E \qquad \dots (i)$$

$$A + B = D + E + 10$$
 ...(iii)

$$B = C + 2 \qquad \dots (iv)$$

$$A + B + C + D + E = 133$$
 ...(v)

From (i) and (ii), we have : 2B = D + E ...(vi)

From (iii) and (vi), we have :
$$A = B + 10$$
 ...(vii)

Using (iv), (vi) and (vii) in (v), we get:

$$(B + 10) + B + (B - 2) + 2B = 133 \Rightarrow 5B = 125 \Rightarrow B = 25.$$

27. (d)

None of the two follows.

28. (c)

Distance travelled when the ball touches the floor 3rd time,

$$h + 0.6h + 0.6h + 0.6 \times 0.6 \text{ h} + 0.6 \times 0.6\text{ h} = 292$$

$$h + 2 \times 0.6 \times h + 2 \times 0.36 \times h = 292$$

$$h(1 + 1.2 + 0.72) = 292$$

$$\Rightarrow$$
 2.92 $h = 292$

$$h = 100 \, \mathrm{cm}$$

29. (b)

Let total number of members be 100,

Then, number of members owning only 2 cars = 20

Number of members owning 3 cars = 40% of 80 = 32

Number of members owning only 1 car = 100 - (20 + 32) = 48

Thus, 48% of the total members own one car each.

30. (c)

Given:

$$AB = AC = 3 \text{ cm} \text{ and } BD = \frac{1}{2}CD$$

AE is median.

To find:

$$AD = ?$$

$$BD + CD = 3$$

 \Rightarrow

$$BD + 2BD = 3BD = 3$$

$$\Rightarrow$$

$$BD = \frac{3}{3} = 1 \text{ cm}$$

Also, since AE is median

$$BE = CE = \frac{3}{2}$$
 cm

$$\Rightarrow$$

$$DE = BE - DE = \frac{3}{2} - 1 = \frac{1}{2}$$
 cm

$$AE = \frac{\sqrt{3}}{2}a = \frac{3\sqrt{3}}{2}$$
 cm

in $\triangle ADE$

$$\Rightarrow$$

$$(AD)^2 = (AE)^2 + (DE)^2$$

$$\Rightarrow$$

$$(AD)^2 = \left(\frac{3\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2$$

$$\Rightarrow$$

$$(AD)^2 = \frac{27}{4} + \frac{1}{4} = \frac{28}{4}$$

$$\Rightarrow$$

$$AD = \sqrt{7} \text{ cm}$$