CLASS TEST

mRDE ERSU
India's Best Institute for IES, GATE \& PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata
Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

NETWORK THEORY

EC-EE

Date of Test: 28/03/2024

1. (b)
2. (c)
3. (c)
4. (b)
5. (b)
6. (c)
7. (a)
8. (d)
9. (d)
10. (a)
11. (c)
12. (b)
13. (c)
14. (a)
15. (c)
16. (c)
17. (c)
18. (c)
19. (b)
20. (b)
21. (a)
22. (b)
23. (a)
24. (d)
25. (a)
26. (c)
27. (d)
28. (b)
29. (c)
30. (a)

DETAILED EXPLANATIONS

1. (b)

The circuit will act as an ideal current source if impedance is infinite

$$
\therefore \quad Z=\frac{(j \omega L)\left(\frac{1}{j \omega C}\right)}{j \omega L+\frac{1}{j \omega C}}=\frac{j \omega L}{-\omega^{2} L C+1}
$$

Now, put $Z=\infty$

$$
\begin{array}{rlrl}
\Rightarrow & 1-\omega^{2} L C & =0 \\
\therefore & \omega & =\frac{1}{\sqrt{L C}} \\
\omega & =\frac{1}{\sqrt{10 \times 10^{-3} \times 25 \times 10^{-6}}}=\frac{1}{5 \times 10^{-4}} \\
& \omega & =2 \mathrm{k} \mathrm{rad} / \mathrm{sec}
\end{array}
$$

2. (c)

Applying nodal analysis at node a,

$$
\begin{aligned}
\frac{V_{a}}{10}+\frac{V_{a}}{-j 20}+\frac{V_{a}-100 \angle 0^{\circ}}{j 10} & =0 \\
\Rightarrow \quad V_{a} & =\frac{200}{1+2 j} \\
I_{1} & =\frac{V_{a}}{10}=\frac{20}{1+2 j}=8.94 \angle-63.44^{\circ} \mathrm{A}
\end{aligned}
$$

3. (c)

Applying source transformation:
Step 1:

Step 2:

Step 3:

Applying KVL in the loop, we get:

$$
\begin{aligned}
7.5+51 V_{x}-9-31.5 I & =0 \\
7.5-9 & =31.5 I-102 I \\
-1.5 & =-70.5 I \\
I & =21.28 \mathrm{~mA}
\end{aligned}
$$

$$
\left\{\because \quad V_{x}=2 I\right\}
$$

4. (c)

Applying KVL in loop abcde,

$$
\begin{aligned}
-12+V-(2+I)-(6+I) & =0 \\
-12+V-2-I-6-\mathrm{I} & =0 \\
V & =2 I+20 \\
\Rightarrow \quad A & =2 \Omega ; B=20 \mathrm{~V}
\end{aligned}
$$

5. (a)

$$
\begin{aligned}
& X_{L}=\omega L=2500 \times 16 \times 10^{-3}=40 \Omega \\
& X_{C}=\frac{1}{\omega C}=\frac{1}{2500 \times 10 \times 10^{-6}}=40 \Omega
\end{aligned}
$$

$$
\because \quad X_{L}=X_{C}
$$

\therefore The tank circuit will be open circuited.
Hence, the current flowing in the circuit will be zero.
6. (c)

Bandwidth, $B=\omega_{2}-\omega_{1}=101-99=2 \mathrm{krad} / \mathrm{sec}$

$$
\begin{aligned}
& B=\frac{1}{R C}=2 \times 10^{3} \\
& C=\frac{1}{100 \times 10^{3} \times 2 \times 10^{3}}=5 \mathrm{nF} \\
& \omega_{1}=\omega_{0}-\frac{B}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \omega_{0}=\omega_{1}+\frac{B}{2}=99+1=100 \mathrm{k} \mathrm{rad} / \mathrm{sec} \\
& \omega_{0}=\frac{1}{\sqrt{L C}} \\
& \Rightarrow \quad L C=\frac{1}{\omega_{0}^{2}} \Rightarrow L=\frac{1}{10^{10} \times 5 \times 10^{-9}}=20 \mathrm{mH}
\end{aligned}
$$

7. (c)

Applying nodal analysis at node 1:

$$
\begin{align*}
\frac{V_{1}}{2}+\frac{V_{1}-V_{2}}{1} & =I_{1} \\
I_{1} & =\frac{3}{2} V_{1}-V_{2} \tag{i}
\end{align*}
$$

Applying nodal analysis at node 2 :

$$
\begin{array}{rlrl}
& \frac{V_{2}}{1}+\frac{V_{2}-V_{1}}{1} & =-I_{1}+I_{2} \\
\Rightarrow \quad I_{2} & =\frac{1}{2} V_{1}+V_{2} \tag{ii}
\end{array}
$$

Comparing equation (i) and (ii) with general equations of Y-parameter, we get

$$
[Y]=\left[\begin{array}{cc}
\frac{3}{2} & -1 \\
\frac{1}{2} & 1
\end{array}\right]
$$

8. (a)

$$
\begin{aligned}
I(s) & =\frac{I_{0}}{s^{2}} ; \quad I_{L}(s)=\left[\frac{5}{s^{2}}-\frac{1}{s}\right]+\frac{1}{s+5} \\
I_{L}(s) & =I(s)\left[\frac{1}{1+s L}\right] \\
{\left[\frac{5}{s^{2}}-\frac{1}{s}\right]+\frac{1}{s+5} } & =\frac{I_{0}}{s^{2}(1+s L)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{5-s}{s^{2}}+\frac{1}{s+5}=\frac{I_{0}}{s^{2}[1+s L]} \\
& \frac{(25)}{s^{2}(s+5)}=\frac{I_{0} / L}{s^{2}\left(s+\frac{1}{L}\right)} \\
& \Rightarrow \quad L=\frac{1}{5}=0.2 \mathrm{H} ; \quad \frac{I_{0}}{L}=25 \\
& \Rightarrow \quad I_{0}=25 L=5 \mathrm{~A}
\end{aligned}
$$

9. (b)

$$
Z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0}
$$

If $I_{2}=0$, then the circuit becomes:

Applying KVL:

$$
\begin{align*}
V_{1}-20 I_{1}-25 I_{1}-0.5 V_{2} & =0 \\
V_{1} & =45 I_{1}+0.5 V_{2} \tag{1}\\
V_{2} & =25 I_{1}+0.5 V_{2} \\
V_{2} & =50 I_{1} \tag{2}\\
\text { solving (1) and (2): } \quad \mathrm{Z}_{11} & =\frac{V_{1}}{I_{1}}=70 \Omega
\end{align*}
$$

10. (c)

$$
\begin{aligned}
& V_{c}(j \omega)=V_{i}(j \omega)\left[\frac{\frac{-j}{\omega C}}{2 \times 10^{3}+\frac{-j}{\omega C}}\right] \\
& V_{c}(j \omega)=V_{i}(j \omega)\left[\frac{1}{1+j 2 \times 10^{3} \times \omega \times C}\right]
\end{aligned}
$$

Also,

$$
\begin{aligned}
& V_{0}(j \omega)=\left[\frac{30 \mathrm{k}}{15 k+30 k}\right] A V_{c}(j \omega) \\
& V_{0}(j \omega)=\frac{2 A}{3} V_{c}(j \omega)
\end{aligned}
$$

$$
\therefore \quad \frac{V_{0}(j \omega)}{V_{i}(j \omega)}=\frac{2 A / 3}{1+j 2 \times 10^{3} \times C \times \omega}
$$

On comparing, $A=6$ and $C=5 \mu F$.
11. (b)

$$
\begin{array}{rlrl}
& P & =I_{\mathrm{rms}} V_{\mathrm{rms}} \cos \theta \\
\Rightarrow & 1000 \mathrm{~W} & =I_{\mathrm{rms}} V_{\mathrm{rms}} \times 0.8 \\
\Rightarrow & I_{\mathrm{rms}} V_{\mathrm{rms}} & =\frac{1000}{0.8}=1250 \\
\Rightarrow & \frac{V_{\mathrm{rms}}^{2}}{I_{\mathrm{rms}} \times V_{\mathrm{rms}}}=\frac{(200)^{2}}{1250}=|Z| \\
\therefore & |Z|=32 \Omega
\end{array}
$$

\because Power factor is leading, $\theta<0^{\circ}$

$$
\begin{aligned}
& \angle Z & =\theta=-\cos ^{-1} 0.8=-36.86^{\circ} \\
\therefore & Z & =|Z| \angle Z=32 \angle-36.86^{\circ}=25.6-j 19.2 \Omega
\end{aligned}
$$

12. (d)

$$
\begin{aligned}
I_{\mathrm{rms}} & =\frac{V_{\mathrm{rms}}}{Z} \\
& =\frac{100 \angle 0^{\circ}}{6+j 15-j 7}=\frac{100}{6+j 8}=6-j 8
\end{aligned}
$$

Complex power supplied by the source,

$$
\begin{aligned}
& S=V_{\mathrm{rms}} I_{\mathrm{rms}}^{*}=100(6+j 8) \\
& S=600+j 800 \mathrm{VA}=1000 \angle 53.13^{\circ}
\end{aligned}
$$

As we know that,

$$
S=P+j Q
$$

\therefore
$P=600 \mathrm{~W}, ~ Q=800 \mathrm{VAR}$
and power factor angle,

$$
\theta=53.13^{\circ}
$$

13. (c)

Using Thevenin's theorem taking 1Ω as load:

- Thevenin's equivalent resistance, R_{th} :

- Thevenin's Equivalent Voltage, V_{th} :

Using source transformation, we get

$$
i_{1}=\frac{3-1}{5}=0.4 \mathrm{~A} ; \quad i_{2}=\frac{1}{4}=0.25 \mathrm{~A}
$$

Applying KVL in outer loop:
$\begin{array}{rlrl} & V_{\mathrm{th}}+3 i_{1}-3+2 i_{2} & =0 \\ V_{\mathrm{th}} & =1.3 \mathrm{~V}\end{array}$

Now,

14. (d)

Norton equivalent resistance R_{N} :

$$
\therefore \quad R_{N}=18 \Omega
$$

Norton current, $I_{\text {SC }}$:

$$
I_{\mathrm{SC}}=\frac{12+6}{18}=1 \mathrm{~A}
$$

\therefore Norton equivalent circuit will be

15. (c)

The Thevenin's voltage across $a b$ is

$$
\begin{array}{rlrl}
& +V_{\mathrm{th}}+6 \mathrm{~V}+4 \mathrm{~V} & =0 \\
\therefore \quad V_{\mathrm{th}} & =-10 \mathrm{~V}
\end{array}
$$

Thevenin's resistance, R_{th} :
by open circuiting all independent current sources,

\therefore The Norton's equivalent circuit is

16. (c)

At $t=0^{-}$

$$
\begin{array}{rlrl}
& & v_{c}\left(0^{-}\right) & =3+12 e^{0}=15 \mathrm{~V} \\
V_{s} & =15 \mathrm{~V} \\
\text { At } t=\infty & v_{c}(\infty) & =3 \mathrm{~V} \\
& & 3 & =\frac{15 \times 10}{10+R} \\
& R & =40 \Omega \\
\Rightarrow & R_{\mathrm{eq}} & =(40 \| 10)+10=18 \Omega \\
& & \text { Time constant, } \tau & =R_{\mathrm{eq}} C=18 \mathrm{C}=\frac{1}{5.56} \\
\Rightarrow & C & =\frac{1}{18 \times 5.56} \\
& C & \simeq 10 \mathrm{mF}
\end{array}
$$

17. (a)

The equivalent impedance of the network can be found as:

$$
R_{\mathrm{eq}}=\frac{V}{I}
$$

$$
\therefore \quad \frac{V}{R}+\frac{V}{j X_{L}}+\frac{V-k V}{-j X_{C}}=I
$$

$$
\begin{aligned}
\frac{I}{V} & =\left[\frac{1}{R}+\frac{1}{j \omega L}+j \omega C(1-k)\right] \\
Y(j \omega) & =\frac{1}{R}+j\left[\omega C(1-k)-\frac{1}{\omega L}\right]
\end{aligned}
$$

At resonance, imaginary part of input admittance becomes zero.

$$
\therefore \quad \omega_{0}=\frac{1}{\sqrt{L C(1-k)}}
$$

For a parallel RLC circuits, quality factor is

$$
Q=\frac{R}{\omega_{0} L}=\frac{R \sqrt{L C(1-k)}}{L}=R \sqrt{\frac{C(1-k)}{L}}
$$

18. (b)
$v_{0}(t)=2 e^{-t}$
Taking Laplace transform, $\quad V_{0}(s)=\frac{2}{s+1}$
$V_{0}(s)=Z(s) I(s)$
$\therefore \quad Z(s)=V_{0}(s) \quad\{\because i(t)=\delta(t)\}$
When $i(t)$ is a pulse i.e.

$$
i(t)=u(t)-u(t-2)
$$

$$
I(s)=\frac{1}{s}-\frac{e^{-2 s}}{s}
$$

$$
\Rightarrow \quad V_{0}(s)=\frac{2}{s+1}\left[\frac{1}{s}-\frac{e^{-2 s}}{s}\right]
$$

$$
V_{0}(s)=\frac{2}{s(s+1)}-\frac{2 e^{-2 s}}{s(s+1)}
$$

Taking inverse Laplace transform:

$$
\text { At } t=3 \mathrm{sec}, \quad \begin{aligned}
v_{0}(t) & =2\left[u(t)-e^{-t} u(t)\right]-2\left[u(t-2)-e^{-(t-2)} u(t-2)\right] \\
v_{0}(t) & =2\left[1-e^{-3}-1+e^{-1}\right] \\
& =2\left[e^{-1}-e^{-3}\right] \\
& =0.636 \mathrm{~V}
\end{aligned}
$$

19. (b)

Applying source transformation and transforming the circuit into s-domain.

$$
\begin{aligned}
V_{0}(s) & =V(s) \frac{s}{3(s+1)} \\
V_{0}(j \omega) & =V(j \omega) \frac{j \omega}{3(j \omega+1)} \\
& =30 \angle 0^{\circ} \times \frac{1 \angle 90^{\circ}}{3 \sqrt{2} \angle 45^{\circ}}
\end{aligned}
$$

$$
\{\therefore \omega=1 \mathrm{rad} / \mathrm{sec}\}
$$

$$
\begin{aligned}
V_{0}(j \omega) & =5 \sqrt{2} \angle 45^{\circ} \\
\therefore \quad v_{0}(t) & =5 \sqrt{2} \cos \left(t+45^{\circ}\right) \mathrm{V}
\end{aligned}
$$

20. (d)

Under bridge balance condition, (since current through 6Ω resistor is zero).

$\Rightarrow \quad V_{2}+V_{3}=20 \mathrm{~V}$
Option (d) satisfies the above condition.
21. (a)

The maximum power is transferred at the frequency at which the load is resistive and it is equal to 1.5Ω i.e., the load is resistive means the imaginary part of the load is equal to zero.

$$
\begin{aligned}
Z_{\text {load }} & =\frac{1 \times \frac{2}{s}}{1+\frac{2}{s}}+L s=\frac{2}{s+2}+L s \\
& =\frac{2(s-2)}{s^{2}-4}+L s
\end{aligned}
$$

Put $s=j \omega$

$$
\begin{aligned}
Z_{\text {load }} & =\frac{2(j \omega-2)}{-\omega^{2}-4}+j \omega L \\
& =\frac{2(j 10-2)}{-104}+j 10 L \\
Z_{\text {load }} & =\frac{4}{104}+j\left(10 L-\frac{20}{104}\right)
\end{aligned}
$$

equating imaginary part to zero.

$$
10 L=\frac{20}{104}
$$

$$
\therefore \quad L=\frac{20}{10 \times 104}=19.23 \mathrm{mH}
$$

22. (b)

The reactive power in the circuit is

$$
Q \propto \sin \theta
$$

If Q is positive then angle of impedance (θ) is positive which implies that current phasor is lagging voltage phasor i.e., load is inductive.

$$
\begin{aligned}
Z & =\frac{V \angle \theta_{V}}{I \angle \theta_{I}}=\frac{V}{I} \angle \theta_{V}-\theta_{I} \\
\theta_{V} & >\theta_{I}
\end{aligned}
$$

Hence, an inductive load has lagging power factor.
23. (d)

Given, circuit,

The open circuit voltage (Thevenin voltage V_{th}) is equal to V.
For Thevenin's resistance : $R_{\text {th }}$ by setting all independent sources to zero, i.e., open circuit the current source and short circuit the voltage source.
$\therefore \quad R_{\mathrm{th}}=R$

24. (c)

In series RLC circuit at resonance,

$$
\text { Current, } I_{R}=\frac{V_{S}}{R}
$$

$$
\begin{array}{ll}
\text { Voltage across inductor is, } & V_{L}=j \omega_{0} L I_{R}=j \omega_{0} L \frac{V_{s}}{R} \\
& V_{L}=j Q V_{s} \\
\text { where, } & Q=\frac{\omega_{0} L}{R}
\end{array}
$$

Since, $Q>1 \Rightarrow V_{L}>V_{S}$
25. (b)

Given, two port network

$$
\therefore \quad[z]=\left[\begin{array}{ll}
6 & 2 \\
2 & 4
\end{array}\right] \Omega
$$

26. (a)

After the switch moves to position 1, the circuit can be drawn as below,

$$
\therefore \quad \text { time constant, } \tau=\frac{L}{R_{e q}}=\frac{10}{20+40}=0.167 \mathrm{sec}
$$

27. (c)

$$
\begin{array}{ll}
\text { Given, } & \omega_{o}=1000 \mathrm{rad} / \mathrm{s} \\
& \omega_{o}=\frac{1}{\sqrt{L C}} \\
\text { Resonant frequency, } & \omega_{o}^{2}=\frac{1}{L C} \\
\Rightarrow & L=\frac{1}{\omega_{o}^{2} \times C} \\
\therefore & L=\frac{1}{10^{6} \times 0.2 \times 10^{-6}}=\frac{1}{0.2}=5 \mathrm{H}
\end{array}
$$

For parallel RLC circuit, Q-factor,

$$
\begin{aligned}
Q & =\omega_{0} R C \\
\Rightarrow \quad & R=\frac{Q}{\omega_{0} C}
\end{aligned}
$$

$$
\begin{array}{ll}
\therefore & R \\
\therefore & \frac{L}{R} \\
\therefore & =\frac{50}{10^{3} \times 0.2 \times 10^{-6}}=\frac{80}{0.2 \times 10^{-3}}=400 \mathrm{k} \Omega \\
400 \times 10^{3} & =12.5 \times 10^{-6} \mathrm{~s}^{-1}
\end{array}
$$

28. (b)

As the circuit has been connected for a long time. Therefore, the inductors behave like a short circuit for the dc voltage source,
\therefore The circuit can be redrawn as

$$
V=\frac{10}{(4+4)} \times 4=5 \mathrm{~V}
$$

By KCL,

$$
i_{x}=\frac{V}{16}=\frac{5}{16} \mathrm{~A}
$$

29. (a)

At $t=0^{+}$:
The switch is in position ' a ' and the independent source is connected from a long time to circuit.
Hence, the circuit is in steady state.
Hence, inductor and capacitor are replaced by short circuit and open circuit respectively.

At $t>0$: The switch is moved to position b,

By using Laplace transform approach.

Let $V(s)$ be the node voltage.
by nodal analysis:

$$
\frac{V(s)}{5}+I(s)+\frac{V(s)-\frac{5}{s}}{3 s+\frac{1}{5 s}}=0
$$

but,

$$
\begin{aligned}
V(s) & =5 \times I(s) \\
\frac{5 I(s)}{5}+I(s)+\frac{5 I(s)-\frac{5}{s}}{3 s+\frac{1}{5 s}} & =0 \\
2 I(s)+\frac{5 I(s)-\frac{5}{s}}{3 s+\frac{1}{5 s}} & =0 \\
6 s I(s)+\frac{2}{5 s} I(s)+5 I(s)-\frac{5}{s} & =0 \\
I(s)\left[5+6 s+\frac{2}{5 s}\right] & =\frac{5}{s}
\end{aligned}
$$

$$
I(s)=\frac{\frac{5}{s}}{5+6 s+\frac{2}{5 s}}
$$

$$
=\frac{\frac{5}{s} \times 5 s}{25 s+30 s^{2}+2}
$$

$$
\therefore \quad I(s)=\frac{25}{30 s^{2}+25 s+2}
$$

$$
I(s)=\frac{\frac{5}{6}}{s^{2}+\frac{5}{6} s+\frac{1}{15}}
$$

$$
=\frac{\frac{5}{6}}{(s+0.0896)(s+0.7436)}
$$

$$
I(s)=\frac{1.274}{s+0.0896}-\frac{1.274}{s+0.7436}
$$

$$
\therefore \quad i(t)=1.274\left(e^{-0.0896 t}-e^{-0.7436 t}\right) u(t) ; t>0
$$

30. (a)

Given, two port circuit is,

We know that, h-parameters for any two port circuit is defined as

$$
\begin{aligned}
& \begin{aligned}
V_{1} & =h_{11} I_{1}+h_{12} V_{2} \\
I_{2} & =h_{21} I_{1}+h_{22} V_{2} \\
\therefore \quad h_{11} & =\left.\frac{V_{1}}{I_{1}}\right|_{V_{2}=0} \quad h_{12}=\left.\frac{V_{1}}{V_{2}}\right|_{I_{1}=0} \\
& h_{21}
\end{aligned}=\left.\frac{I_{2}}{I_{1}}\right|_{V_{2}=0} \quad h_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{I_{1}=0} \\
\therefore \quad h_{11} & =z_{1}=1 \Omega \quad h_{21}=\frac{I_{2}}{I_{1}}=-1 \\
& h_{12}=\frac{V_{1}}{V_{2}}=1 \quad h_{22}=-j 1 \mho \\
& {[h]=\left[\begin{array}{cc}
1 & 1 \\
-1 & -j 1
\end{array}\right] }
\end{aligned}
$$

