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Q.No. 1 to Q.No. 10 carry 1 mark each

Q.1 At the point x = 1, the function

3 1; 1( )
1; 1

x xf x
x x

 − < < ∞= 
− −∞ < ≤

 is

(a) Continuous and differentiable
(b) Continuous and not differentiable
(c) Discontinuous and differentiable
(d) Discontinuous and not differentiable

Q.2 For a function f (x), a table is given below

x
f x( )

0 1 2 3 4
2 1 0.4 0.2 0.1176

5
0.077

The value of 
5

0

( )·f x dx∫  by Trapezoidal’s rule

is ________.
(a) 2.25 (b) 2.50
(c) 2.75 (d) 3.00

Q.3 Which of the following represents the LU
decomposition of the given matrix. (Using
Crout’s method)

2 4
6 3

A  
=  

 

(a)
1 0 2 2
6 1 0 9

L U   
= =   −   

(b)
1 0 2 2
6 9 0 1

L U   
= =   −   

(c)
2 0 1 2
6 9 0 1

L U   
= =   −   

(d)
1 2 2 0
0 1 6 9

L U   
= =   

   

Q.4 Let x be a random variable with probability
density function defined as,

f(x) = 
 ≤
 < ≤



0.1 for 1
0.4 for 1 2

0 else

x
x

then P(–1 ≤ x ≤ 1) is

(a)
1
5 (b)

4
5

(c)
1
4 (d)

3
4

Q.5 Find the value of 
0

loglim
cotx

x
x→

(a) 0 (b) 1
(c) ∞ (d) 0.5

Q.6
/2

cos( )cos(sin( ))x x dx
π

−π
∫

(a) 1 (b) 0
(c) cos 1 (d) sin 1

Q.7 The general solution of the differential
equation e x tany dx + (1 – ex)sec2ydy = 0 is
(a) siny = C(1 – e x)
(b) cosy = C(1 – e x)
(c) coty = C(1 – ex)
(d) tany = C(1 – e x)

Q.8 The particular integral of
2

2
2 2 8+ = + +

d y dy x x
dxdx

 is

(a)
3

8
3

+x x (b)
3

6
3

+x x

(c)
3

24
3

+x x (d)
3

24
3

+ +x x x

Q.9 If 1sin−
= xy e  and 1cos ,

−−= xz e  then the

value of 
2

2
1/ 2=x

d y
dz  will be

(a) 0 (b)
1

ln 2

(c) 2
1

(ln 2) (d)
1
2

Q.10 The order and degree of differential
equation of family of curves y = ex (Acosx +
Bsinx), are respectively
(a) 1 and 1 (b) 2 and 1
(c) 2 and 2 (d) 1 and 2
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Q.No. 11 to Q.No. 30 carry 2 marks each

Q.11 If 
1

lim
1 log

x

x

x x
x x→

−
− −

 = A, then A is _______.

(a) 0
(b) 1
(c) 2
(d) Limit does not exists

Q.12 Evaluate sin x dx
x∫

(a) cos x c− + (b) 3/22 cos( )x c− +

(c) 2 sin x c− + (d) 2 cos x c− +

Q.13 What is the value of 
/2

0
log(tan )d

π

∫ x x ?

(a) –2π log 2 (b) –π log 2
(c) 1 (d) 0

Q.14 Find an eigen vector corresponding to
largest eigen value of matrix A =

1 1 1
1 1 1
1 1 1

− 
 − 
 − 

(a)
1
1
1

 
 
 
  

(b)
1
2
1

 
 
 
  

(c)
2
1
1

 
 
 
  

(d)

1
2
1
0

 
 
 
 
  

Q.15 The area of the segment made by the
parabola x2 = 4y by the line x – 2y + 4 = 0 is
(a) 9 (b) 12
(c) 16 (d) 24

Q.16 Consider the system of linear equations
given below:

–2x + y + z = l
x – 2y + z = m
x + y – 2z = n

If l + m + n = 0, then the system of equations
has
(a) No solution
(b) Trivial solutions
(c) Unique solution
(d) Infinitely many solutions

Q.17 A matrix A = 
1 0 1
1 2 1
2 2 3

− 
 
 
  

 has three linearly

independent eigen vectors X1, X2, X3
corresponding to the three eigen values 1,
2 and 3 respectively. Which of the following
is correct?
(a) X1 and X3 are orthogonal
(b) X2 and X3 are orthogonal
(c) X1 and X2 are orthogonal
(d) None of these

Q.18 A function is defined by f(x) = 2x3 – 3x2 – 12x
+ 5 for –2 ≤ x ≤ 3. Which one of the following
statements is true about this function?
(a) function is decreasing for (–2, –1).
(b) function has a minima for x = –1.
(c) function has a maxima for x = 2.
(d) function is decreasing for (–1, 2).

Q.19 A function is defined by f(x) = 2x3 – 3x2 – 12x
+ 5 for –2 ≤ x ≤ 3. Which one of the following
statements is true about this function?
(a) function is decreasing for (–2, –1).
(b) function has a minima for x = –1.
(c) function has a maxima for x = 2.
(d) function is decreasing for (–1, 2).

Q.20 The equation of the curve passing through

the point 0,
3
π 

  
 satisfies the following

differential equation is  sinx cosydx + cosx
sinydy = 0

(a)
1cos x cos
2

y = (b) sinx cosy = 0

(c)
3cos cos

2
x y = (d) sinx siny = 0



© Copyright :www.madeeasy.in

4 Civil Engineering

Q.21 Which one of the following statements is
true about the differential equation given
below?
(xy3 + y)d x + 2(x2y2 + x + y 4)dy = 0
(a) The equation is exact.
(b) The equation is not exact and can be

made exact by multiplying with 
1 .
x

(c) The equation is not exact and can be
made exact by multiplying with y.

(d) The equation is not exact and can be

made exact by multiplying with 
1
y .

Q.22 The real part of an analytic function is x3 –
3xy2 + 3x2 – 3y2, then the imaginary part of
the function will be
(a) 3xy2 + 6xy+ x2 + C
(b) 3x2y + 2xy + y 2 + C
(c) 8y2 – 3xy2+ 3y2 – 3x2 + C
(d) 3x2y + 6xy – y 3 + C

Q.23 The point of intersection of the curves 3x3 +
2x2 + 8x – 5 = 0 and 2x3 + 3x + 2 = 0, is
calculated by using Newton- Rapson’s
method. The value of x at intersection
correct upto 2 decimal points is
approximately
(a) 1.21 (b) 2.62
(c) 0.91 (d) 3.82

Q.24 A and B throw alternatively a pair of dice.
A wins if he throws 6 before B throws 7
and B wins if he throws 7 before A throws
6.  If A starts the game, then the probability
that B wins the game is

(a)
5
6 (b)

31
61

(c)
30
61 (d)

36
71

Q.25 The values of ‘a’ and ‘b’ such that the surface
a x2 – byz = (a + 2)x is orthogonal to the
surface 4x2y + z3 = 4 at the point (1, –1, 2),
are respectively
(a) a = 2, b = 1 (b) a = 2.5, b = 1
(c) a = 3, b = 1 (d) a = 4, b = 1

Q.26 An urn A contains 2 white and 4 black balls.
Another urn B contains 5 white and 7 black
balls. A ball is transferred from urn A to
urn B, then a ball is drawn from urn B. The
probability, that the drawn ball is white, is

(a)
2
13 (b)

10
39

(c)
16
39 (d)

12
39

Q.27 The probability density function of a
continuous random variable is given by,

; 0 1
( ) 2 ; 1 2

0 ; Otherwise

x x
f x x x

≤ ≤
= − ≤ ≤



The mean value of the random variable is
(a) 1 (b) 1.5
(c) 1.67 (d) 0

Q.28 A curve given by x2 + 4y2 = 36 is revolved
around x axis. The volume of solid
generated is
(a) 64π unit3 (b) 72π unit3

(c) 144π unit3 (d) 48π unit3

Q.29 Consider the differential equation given
below:

( ) ( ) ( )
dy

yf x f x f x
dx

+ ′ = ⋅ ′

Here f (x) is purely a function of x. The
solution of the equation is
(a) yef (x) = f (x) [ef (x) + 1] + c
(b) yef (x) = ef (x) + f(x) + c
(c) log [y +f (x)] + f (x) = 0
(d) log [1 + y –f (x)] + f (x) = c

Q.30 The particular integral of the differential
equation D 2(D 2 + 4)y = 96x2 for x = 2 will be
(a) 8 (b) 5
(c) 9 (d) 2
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DE TAILED EXPL ANATIONS

1. (b)

1
lim ( )
x

f x
−→

=
1

lim ( 1) 0
x

x
−→

− =

1
lim ( )
x

f x
+→

= 3

1
lim ( 1) 0
x

x
+→

− =

Also f(1) = 0

Thus
1

lim ( )
x

f x
−→

=
1

lim ( ) (1)
x

f x f
+→

=

⇒ f is continuous at x = 1
And Lf′(1) = 2, Rf′(1) = 1
⇒ f is not differentiable at x = 1

2. (c)
5

0

( )·f x dx∫ = ( ) ( )0 5 1 2 3 42
2
h y y y y y y + + + + + 

= ( ) ( )1 2 0.077 2 1 0.4 0.2 0.1176
2

 + + + + +  

� 2.75

3. (c)

Using Crout’s method

A = 11 12

21 22

0 1
0 1

l u
l l

   
   
   

2 4
6 3

 
 
 

= 11 12

21 22

0 1
0 1

l u
l l

   
   
   

l11 = 2 l11 u12 = 4

u12 =
4 2
2

=

l21 = 6 l21 u12 + l22 = 3

6 × 2 + l22 = 3

l22 = 3 – 12

l22 = –9

So, LU decomposition of given matrix is

L =
2 0
6 9

 
 − 

U =
1 2
0 1

 
 
 

Note: Candidates can use options to solve such questions.

4. (a)

P(–1 ≤ x ≤ 1) = ( )
−
∫
1

1
0.1 dx

= × =1 12
10 5
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5. (a)

0

log
lim

cotx

x
x→

=
2

20 0

1
sinlim lim

cosx x

xx
xec x→ →

= −
−

from ∞ 
 ∞ 

=
0

2 sin coslim 0
1x

x x
→

− = 0from
0

 
  

6. (d)
u = sin x

du = cos x dx

x =
2
π

⇒ u = sin
2
π

 = 1

x = –π ⇒ u = sin(–π) = 0
/2

cos( )cos(sin( ))x x dx
π

−π
∫ =

1

0

cosudu∫

=
1
0sin u

= (sin 1) – sin (0) = sin 1

7. (d)
2sec

tan(1 )
+

−

x

x
ye dx dy
ye = 0

Integrating on both sides, we get,
–ln(1 –ex) + ln(tany) = C1

tan
ln

(1 )

 
  − 

x
y

e = C1

tan
(1 )− x

y
e = 1Ce  = C

tany = C(1 –ex)

8. (a)
(D 2 + D)y = x2 + 2x + 8

The particular integral is,

P I =
2 2 8

(1 )
+ +

+
x x
D D

= 1 2 2 3 21 1(1 ) ( 2 8) (1 ...)( 2 8)−+ + + = − + − + + +D x x D D D x x
D D

= 2 21 1( 2 8 2 2 2) ( 8)+ + − − + = +x x x x
D D  = 

3
8

3
+x x
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9. (a)

ln y = sin–1x, ln z = –cos–1x

ln y – ln z = sin–1x + cos–1x

ln  
  

y
z = 2

π

y = zeπ/2

dy
dz = eπ/2

2

2
d y
dz

= 0

10. (b)

We have y = ex (Acosx + Bsinx)

y ′ = ex (Acosx + Bsinx) + ex (–Asinx + Bcosx)

= y + ex [–Asinx + Bcosx]

y ′′ = y ′ + ex (–Asinx + Bcosx) + ex (–Acosx – Bsinx)

= y ′ + y ′ – y – y = 2y ′ – 2y

⇒ Order = 2

Degree = 1

11. (c)

1
lim

1 log

x

x

x x
x x→

−
− −

0 form
0

 
  

=
1

( ) 1
lim 11 0

x

x

d x
dx

x
→

−

− −

Let, y = xx

log y = x log x

∴
1 dy
y dx =

1 1 logx x
x

⋅ + ⋅

or ( )xd x
dx = xx(1 + logx)

=
1

(1 log ) 1lim 11

x

x

x x

x
→

+ −

−

0 form
0

 
  

=
1

2

1( ) (1 log ) 0
lim 1

x x

x

d x x x
dx x

x
→

 ⋅ + + −  

=

2
2

21

1(1 log )
1(1 0) 1 1lim

1

x x

x

x x x
x

x−→

 + +   + + ⋅  =  = 2
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12. (d)

Let u = x

Then du =
1

2
dx

x

∴ dx = 2du x⋅

sin x dx
x∫ = sin 2u x du

x
⋅∫  = 2 sin udu∫

= 2 cos x c− +

13. (d)

I =
/2

0

sinlog
cos

x dx
x

π  
  ∫

= [ ]
/2

0

log(sin ) log(cos )x dx x dx
π

−∫

=
/2 /2

0 0

log sin log(cos )
2

x dx x dx
π ππ − −  ∫ ∫

I = 0

14. (a)
λ – AI = (1 – λ) (λ2 – 2) + (2 – λ) – λ = –λ3 + λ2

⇒ –λ3 + λ2 = 0
⇒ –λ2(λ – 1) = 0

λ = 0, λ = 1
The largest eigen value is 1

A – I =

1 2

0 1 1
1 2 1
1 1 0 R R↔

− 
 − 
 − 

⇒

3 3 1

1 2 1
0 1 1
1 1 0 R R R← +

− 
 − 
 − 

⇒

3 3 2

1 2 1
0 1 1
0 1 1 R R R← −

− 
 − 
 − 

⇒

1 1 22

1 2 1
0 1 1
0 0 0 R R R← −

− 
 − 
  

⇒
1 0 1
0 1 1
0 0 0

− 
 − 
  
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[ ]A I x−
�

= 0
x1 – x3 = 0 ⇒ x1 = x3,
–x2

 +x3 = 0 ⇒ x2 = x3

x� =
1 3

2 3 3

3 3

1
1
1

x x
x x x
x x

     
     = =     
          

∴ x1 =
1
1
1

 
 
 
  

 is an eigen vector.

15. (a)
Parabola given : x2 = 4y ...(i)

Straight line is x – 2y + 4 = 0

y =
4

2
x +

, put in (i)

⇒ x2 = 2 (x + 4)
⇒ x2 – 2x – 8 = 0
⇒ x2 – 4x + 2x – 8 = 0
⇒ x (x – 4) + 2 (x – 4) = 0
⇒ x = 4, –2

y

x

Q

x = –2 x = 4O

P

Required area = POQ

=
4 4

2 2

 from straight line –  from parabolay dx y dx
− −
∫ ∫

=
4 4 2

2 2

4  – 
2 4

x x dx
− −

+ 
  ∫ ∫

=
4 42 3

2 2

1 14
2 2 4 3

x xx
− −

+ −

= { } ( )1 18 16 ( 6) 64 8
2 12

+ − − − +

=
1 130 72 15 6 9
2 12

× − × = − =

16. (d)
AX = B

Augmented matrix, [A : B] =
2 1 1 :
1 2 1 :
1 1 2 :

m
n

− 
 − 
 − 

l
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R3 → R3 + R2 + R1:

A : B =
2 1 1 :

1 2 1 :
0 0 0 :

m
m n

−
−

+ +

l

l

Since, l + m + n = 0
Rank of [A : B] = 2

Rank of [A] = Rank of [A : B] = 2 < 3 (Number of variables)
⇒ Infinitely many solutions are possible.

17. (d)
For λ = 1

1

2

3

0 0 1
1 1 1
2 2 2

x
x
x

−   
  
  
     

= 0

X1 = 1

1
1

0
c

 
 − 
  

For λ = 2

1

2

3

1 0 1
1 0 1
2 2 1

x
x
x

− −   
   
   
      

= 0

x1 + x3 = 0
2x1 + 2x2 + x3 = 0

X2 = 2

2
1
2

c
− 

 
 
  

For λ  = 3

1

2

3

2 0 1
1 1 1
2 2 0

x
x
x

− −   
   −   
      

= 0

x1 = –x2

x1 = 3
1

2
x−

X3 = 3

1
1
2

c
− 

 
 
  

Since, 1 2
TX X ≠ 0

2 3
TX X ≠ 0

3 1
TX X ≠ 0

None of the above is correct.
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18. (d)
f(x) = 2x3 – 3x2 –12x + 5

f ′(x) = 6x2 – 6x – 12
For minima/maxima, f ′(x) = 0

6x2 – 6x – 12 = 0
x2 – x – 2 = 0

(x + 1) (x – 2) = 0
x = –1, 2

f ′′(x) = 12x – 6
f ′′(–1) = –12 – 6 = –18 < 0 ⇒ maxima

f ′′(2) = 24 – 6 = 18 > 0 ⇒ minima
The function has maxima at x = –1 and minima at x = 2.
Critical point (–1, 2) draw plot on line graph:
Since 0 ∈ (–1, 2) and f ′(0) = 6 × 02 – 6 × 0 – 12 = – 12 < 0

–1 0 2

The function is decreasing between –1 and 2.

19. (d)
f(x) = 2x3 – 3x2 –12x + 5

f ′(x) = 6x2 – 6x – 12
For minima/maxima, f ′(x) = 0

6x2 – 6x – 12 = 0

(–1, 0)

(2, 0) (3, 0)
x

y

(–2, 0)

x2 – x – 2 = 0
(x + 1) (x – 2) = 0

x = –1, 2
f ′′(x) = 12x – 6

f ′′(–1) = –12 – 6 = –18 < 0 ⇒ maxima
f ′′(2) = 24 – 6 = 18 > 0 ⇒ minima

The function has maxima at x = –1 and minima at x = 2.
The function is decreasing between –1 and 2.

20. (a)
sinx cosydx + cosx sinydy = 0

Divide by cosx cosy, we get ,
tanx d x + tanydy = 0

Integrating the equation,
log secx + log secy = C1

1log
cos cosx y = C1

cosx cosy = C

Since it passes through 0,
3
π 

  

cos(0) cos
3
π 

   = C
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1
2 = C

⇒ The equation of curve is,

cosx cosy =
1
2

21. (c)
M
y

∂
∂ = 3xy2 + 1

N
x

∂
∂ = 4xy2 + 2

M
y

∂
∂ ≠

N
x

∂
∂

So, the given equation is not exact.

N M
x y

M

∂ ∂−
∂ ∂ =

2 2

2
4 2 3 1 1

( 1)
xy xy

yy xy
+ − −

=
+

I F =
1

log
dy

y ye e y= =

The given equation can be made exact by multiplying with integrating factor, i.e. y for this problem.

22. (d)
u(x, y) = x3 – 3xy2 + 3x2 – 3y2

u
x

∂
∂ =

v
y

∂
∂  = 3x2 – 3y2 + 6x

u
y

∂
∂ =

v
x

∂−
∂  = –6xy – 6y

dv =
v v u udx dy dx dy
x y y x

∂ ∂ ∂ ∂⋅ + ⋅ = − +
∂ ∂ ∂ ∂

= (6xy + 6y)dx + (3x2 – 3y2 + 6x)dy
v = 3x2y + 6xy – y3 + C

23. (c)
If the two curves intersects, then at point of intersection,

3x3 + 2x2 + 8x – 5 = 2x3 + 3x + 2
x3 + 2x2 + 5x – 7 = 0

f(x) = x3 + 2x2 + 5x – 7
f(0) = 0 + 0 + 0  – 7 = –7 < 0
f(1) = 1 + 2 + 5  – 7 = 1 > 0

⇒ One root lies between 0 and 1. Let us assume 1 as initial value.
f ′(x) = 3x2 + 4x + 5

x1 =
3 2

2
1

( ) 1 2 1 5 1 71 1 0.9167
( ) 3 1 4 1 5x

f x
f x =

+ × + × −− = − =
′ × + × +

x2 = 1
0.9167

( ) 0.9136
( ) x

f xx
f x =

− =
′
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24. (b)
Number of ways of throwing 6 is five ⇒ (1 + 5), (2 + 4), (3 + 3), (4 + 2), (5 + 1)
Number of ways of throwing 7 is six ⇒ (1 + 6), (2 + 5), (3 + 4), (4 + 3), (5 + 2), (6 + 1)

Probability of throwing 6, p1 = 
5

36

Probability of failing to throw 6, p2 = 
5 311

36 36
− =

Probability of throwing 7, q1 = 
6
36

Probability of failing to throw 7, q2 = 
6 301

36 36
− =

Probability of B winning = p2q1 + p2q2 p2q1 + p2q2p2q2p2q1 + ....
= p2q1[1 + p2q2 + (p2q2)2 + (p2q2)3 + .....]

=
2 1

2 2

31 6
31 6 3136 36

31 30(1 ) 366 611
36 36

p q
p q

× ×= = =
− − ×

25. (b)
φ1 = ax2 – byz – (a + 2)x

∇ φ1 = ˆˆˆ[2 x ( 2)]ia a bzj byk− + − −

∇ φ1(1, –1, 2) = ˆˆ ˆ( 2) 2a i bj bk− − +
φ2 = 4x2y + z3 – 4

∇ φ2 = 2 2 ˆˆ ˆ8 4 3xyi x j z k+ +

∇ φ2(1, –1, 2) = ˆˆ ˆ8 4 12i j k− + +
Since surfaces are orthogonal to each other at (1, –1, 2)

∇ φ1⋅∇ φ2 = 0

ˆ ˆˆ ˆ ˆ ˆ[( 2) 2 ] [ 8 4 12 ]a i bj bk i j k− − + ⋅ − + +  = 0

–8(a – 2) – 8b + 12b = 0 ... (i)
Also point (1, –1, 2) lies on the surface.
⇒ a × 1 + 2b = (a + 2)1

b = 1
Putting this in equation 1, we get,

–8(a – 2) – 8 + 12 = 0

a – 2 =
1 ( 4) 0.5
8

− × − =

a = 2.5

26. (c)

Case-I: White ball is transferred from urn A to urn B

Probability of drawing white ball from B = 
2 6 2

2 4 13 13
× =

+
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Case-II: Black ball is transferred from A to B

Probability of drawing black ball from B = 
4 5 10

2 4 13 39
× =

+

Required probability =
2 10 16
13 39 39

+ =

27. (a)

Mean =
1 2

2

0 1
( ) (2 )xf x dx x dx x x dx

∞

−∞

= + −∫ ∫ ∫

=

213 3
2

0 1

1 8 14 1 1
3 3 3 3

x xx
  −+ − = + − − =   

28. (b)

(0, 3)

(–6, 0)

(0, –3)

(6, 0)
x

y

y

Circle with radius  and
-axis passing through its originx

y

Volume generated =
6 6 2

2

6 6

36
4

xy dx dx
− −

 −π = π   
∫ ∫

=

66 3
2

0 0

2 (36 ) 36
4 2 3

xx dx x
 π× π− = − 
  

∫

= 72π

29. (d)

IF = ( ) ( )f x dx f xe e′∫ =

Solution of differential equation,

y × IF = ( ) ( )IF f x f x dx⋅ ⋅ ′∫
y × ef (x) = ( ) ( ) ( )f xe f x f x dx⋅ ⋅ ′∫

Let f (x) = t

f ′(x) dx = dt

y × et = te tdt⋅∫
y.et = t.et – et + c

y = t – 1 + ce–t

log(y + 1 – t) = –t + c′

log [y + 1 – f (x)] + f (x) = c′
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30. (a)

For particular integral,

PI =

2
2

2
2

2 2 22
2

1
496 1 9696

4( 4)
4 1

4

D x
x x

D D DDD

  
−     = =   +  

+   

=

2

2

1
224

x

D

 −  

PI =
4 2

2 224 2 ( 3)
4 3 4
x x x x

 
− = − 

×  

2xPI = = 2 × 22(4 – 3) = 8


