

Q.No. 1 to Q.No. 10 carry 1 mark each

Q.1 Consider the function defined by,

$$f(x) = \begin{cases} \frac{\sin(3p-1)x}{3x}; & x < 0\\ \frac{\tan(3p+1)x}{2x}; & x > 0 \end{cases}$$

If this function is known to be differentiable at x = 0, then the value of p is

(a)
$$\frac{1}{3}$$
 (b) $\frac{4}{3}$
(c) $-\frac{1}{3} \text{ or } \frac{1}{3}$ (d) $-\frac{5}{3}$

Q.2 The order and degree of differential equation of family of curves $y = e^x (A\cos x + B\sin x)$, are respectively

(a)	1 and 1	(b)	2 and 1
(C)	2 and 2	(d)	1 and 2

Q.3 If y(0) = 0, then the solution of the differential (dy)

equation
$$\log_e\left(\frac{dy}{dx}\right) = ax + by$$
 is
(a) $\frac{e^{ax}}{a} + \frac{e^{-by}}{b} = \frac{a+b}{ab}$
(b) $\frac{e^{ax}}{a} + \frac{e^{bx}}{b} = a+b$
(c) $\frac{e^{ax}}{a} + \frac{e^{-by}}{b} = \frac{1}{a+b}$
(d) $\frac{e^{ax}}{a} + \frac{e^{-by}}{b} = \frac{1}{a} - \frac{1}{b}$

Q.4 A vector

 $\vec{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (2xy - axz + 2z)\hat{k}$ is known to be solenoidal. The value of "a" is (a) 2 (b) -3 (c) -2 (d) Can't be determined

- **Q.5** Consider a function $\phi(x, y, z) = x^2yz + 4xz^2$. The greatest rate of increase of ϕ at point (1, -2, 1) is
 - (a) $\sqrt{37}$ (b) $\sqrt{39}$
 - (c) $\sqrt{27}$ (d) $\sqrt{35}$

Q.6 The solution to the system of equations is

$$\begin{bmatrix} 3 & 7.5 \\ -6 & 4.5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ -90 \end{bmatrix}$$

(a) 12, -4 (b) -12, -4
(c) -12, 4 (d) 12, 4

Q.7
$$\lim_{x \to 0} \frac{\ln(1+5x)}{e^{7x}-1}$$
 is equal to
(a) 0 (b) $\frac{5}{7}$

(c)
$$\frac{3}{10}$$
 (d) 1

Q.8 A bag contains 15 defective items and 35 non defective items. If three items are selected at random without replacement, what will be the probability that all three items are defective?

(-)	1	(1-)	13
(a)	40	(D)	560
	15		12
(C)	34	(D)	499

Q.9 If
$$x = b(2 - \cos\theta)$$
 and $y = b(\sin\theta + \theta)$, then $\frac{dx}{dy}$

will be equal to

(a)
$$tan\left(\frac{\theta}{2}\right)$$

(b) $cot\left(\frac{\theta}{2}\right)$
(c) $sin\left(\frac{\theta}{2}\right)$
(d) $cos\left(\frac{\theta}{2}\right)$

Q.10 A coin is tossed 8 times. What is the probability of getting tails exactly 6 times?

(a)	7 16	(b)	7 64
(c)	$\frac{1}{8}$	(d)	7 32

Q.No. 11 to Q.No. 30 carry 2 marks each

Q.11 A curve given by $x^2 + 4y^2 = 36$ is revolved around *x* axis. The volume of solid generated is (a) 64π unit³ (b) 72π unit³ (c) 144π unit³ (d) 48π unit³

3

Q.12 Consider the differential equation given below:

$$\frac{dy}{dx} + yf'(x) = f(x) \cdot f'(x)$$

Here f(x) is purely a function of x. The solution of the equation is

- (a) $ye^{f(x)} = f(x) [e^{f(x)} + 1] + C$
- (b) $y e^{f(x)} = e^{f(x)} + f(x) + c$
- (c) $\log [y + f(x)] + f(x) = 0$
- (d) $\log [1 + y f(x)] + f(x) = c$
- Q.13 The particular integral of the differential equation $D^{2}(D^{2} + 4)y = 96x^{2}$ for x = 2 will be
 - (a) 8 (b) 5 (c) 9 (d) 2
- **Q.14** f(z) = u + iv is an analytic function. If u(x, y) =2x(1 - y), then v(x, y) will be (a) $x^2 + y^2 - 2y + c$ (b) $x^2 - y^2 + 2y + c$ (c) $2x^2 - y^2 + c$ (d) $x^2 + 2y + c$
- **Q.15** If X is a random variable with PDF given by,

$$f(x) = \begin{cases} kx & ; & 0 < x \le 2\\ 2k & ; & 2 < x \le 4\\ -kx + 6k & ; & 4 < x \le 6\\ 0 & ; & \text{otherwise} \end{cases}$$

The value of k and mean value of X are respectively

(a)	1/2 and 3	(b)	$\frac{1}{8}$ and $\frac{11}{6}$
(C)	3 and $\frac{13}{6}$	(d)	$\frac{1}{6}$ and 3

Q.16 The value of integral $I = \int_0^{\pi/2} \sqrt{1 + \sec x} \, dx$ will be

(a)	2π	(b)	π/2
(C)	π/4	(d)	π

- **Q.17** For the differential equation (2y 3x)dx + xdy= 0, the initial condition is zero i.e. y = 0 for x =0. The value of y for x = 2 will be
 - (a) 1 (b) 2
 - (d) 0.5 (c) 3
- Q.18 Four cards were drawn from a pack of 52 cards. The probability that they are a king, a queen, a jack and an ace.

(a)	512	(12)	64
(a)	54145	(C)	54145
(a)	256	(a)	64
(C)	270725	(u)	270725

Q.19 A parametric curve defined by
$$x = \sin\left(\frac{\pi k}{2}\right), y = \cos\left(\frac{\pi k}{2}\right)$$
 in the range $0 \le k \le 1$ is rotated about the *y*-axis by 360 degree.

Area of the surface generated is

- (a) 2π (b) π (c) $\frac{\pi}{2}$ (d) 4π
- **Q.20** For the function $f(y) = y^2 e^{-y}$, the maximum occurs when y is equal to
 - (a) 1 (b) 3 (c) 2 (d) 4
- Q.21 The number of satellites launched worldwide in a month follows Poisson distribution with mean as 6.8. The probability of launch of less than 3 satellites during a randomly selected month is (a) 0.034 (b) 0.34 (c) 0.068 (d) 0.0034
- Q.22 The equation of the curve passing through the

point $\left(0, \frac{\pi}{3}\right)$ satisfies the following differential

equation is $\sin x \cos y dx + \cos x \sin y dy = 0$

(a) $\cos x \cos y = \frac{1}{2}$ (b) $\sin x \cos y = 0$. 2

(c)
$$\cos x \cos y = \frac{\sqrt{3}}{2}$$
 (d) $\sin x \sin y = 0$

- **Q.23** The polynomial, $P(x) = x^5 + x + 2$, has
 - (a) All real roots
 - (b) 3 real and 2 complex roots
 - (c) 1 real and 4 complex roots
 - (d) None of these

Q.24 If $\int \sec^3\theta \, d\theta = a(\sec\theta \tan\theta) + b \ln|\sec\theta + \tan\theta|$ + c, then the value of (a + b) is

> (a) 1 (b) 2 (c) 3 (d) 4

Q.25 The value of $\int \overline{F} \cdot \overline{dr}$, where $\overline{F} = x^2 y^2 \overline{i} + y \overline{j}$ and C is the curve $y^2 = 4x$ in the xy-plane from (0, 0) to (4, 4), is (a) 66 (b) 132

(c) 264 (d) 528

- **Q.26** The function, $f(x) = 2x^3 3x^2 36x + 10$, has a local maximum value at 'x' equals to (a) -2 (b) -1
 - (c) 3 (d) 4
- **Q.27** What is the length of the curve, $3x^2 = y^3$, between y = 0 and y = 1?

(a)
$$\frac{1}{18} \left(7\sqrt{7} - 8 \right)$$
 (b) $\frac{1}{9} \left(7\sqrt{7} - 8 \right)$

- (c) $\frac{1}{3}(7\sqrt{7}-8)$ (d) None of these
- **Q.28** The area bounded by $y = x^3$ and y = x in the third quadrant is

(a)
$$\frac{1}{8}$$
 (b) $\frac{1}{4}$

(c) $\frac{1}{2}$ (d) 1

Q.29 The solution of $(x + 1)\frac{dy}{dx} + 1 = 2e^{-y}$ is (a) $(x + 1)(2 - e^{y}) = k$ (b) $(x + 1)(2 - e^{-y}) = k$ (c) $(x - 1)(2 - e^{-y}) = k$ (d) $(x + 1)(2 + e^{y}) = k$ where, *k* is a constant

Q.30 Find the solution of $\frac{d^2y}{dx^2} = y$ which passes

through the origin and the point $\left(In 2, \frac{3}{4} \right)$.

(a)
$$y = \frac{1}{2}e^{x} - e^{-x}$$
 (b) $y = \frac{1}{2}(e^{x} + e^{-x})$
(c) $y = \frac{1}{2}(e^{x} - e^{-x})$ (d) $y = \frac{1}{2}e^{x} + e^{-x}$

	LASS T	res	БТ ——			S.No	o. : 01 JP_ME	_2603	32024
			nad			15			
		Ind	ia's Best Ins	stitute	e for IES, GA	TE &	PSUs		
	Weht	Dell	ni Bhopal H	Hyderab F-mail· i	ad Jaipur P	une n P	Kolkata)	
	iico.				integnidaced).			-	
								-1/	20
ENGINEERING MATHEMATICS									
	ME	ECł	HANIC	CAL	. ENGI	NE	ERING	3	
	ME	ECł	HANIC Date of	CAL Test	. ENGI : 26/03/2	NE 2024	ERING	6	
	Me	ECł	HANIC Date of	CAL Test	. ENGI : 26/03/2	NE 2024	ERING		
AN	ME swer key	ECH	HANIC Date of	CAL Test	. ENGI : 26/03/2	NE 2024	ERING	-	
AN 1.	ME SWER KEY	EC > 7.	HANIC Date of	Test	. ENGI : 26/03/2	NE 2024 19.	ERING	25.	(c)
AN 1. 2.	МЕ <u>SWER КЕУ</u> (d) (b)	ECI > 7. 8.	HANIC Date of (b) (b)	CAL Test 13. 14.	. ENGI : 26/03/2 (a) (b)	NE 2024 19. 20.	ERING 4 (a) (c)	25.	(c) (a)
AN 1. 2. 3.	ME SWER KEY (d) (b) (a)	FCI 7. 8. 9.	HANIC Date of (b) (b) (a)	CAL Test 13. 14. 15.	. ENG : 26/03/2 (a) (b) (a)	NE 2024 19. 20. 21.	ERING 4 (a) (c) (a)	25. 26. 27.	(c) (a) (b)
AN 1. 2. 3. 4.	ME SWER KEY (d) (b) (a) (a)	 FCI 7. 8. 9. 10. 	HANIC Date of (b) (b) (a) (b)	CAL Test 13. 14. 15. 16.	. ENG : 26/03/2 (a) (b) (a) (d)	NE 2024 19. 20. 21. 22.	ERING 4 (a) (c) (a) (a)	25. 26. 27. 28.	(c) (a) (b) (b)
AN 1. 2. 3. 4. 5.	ME SWER KEY (d) (d) (a) (a) (a)	 FCI 7. 8. 9. 10. 11. 	 HANIC Date of (b) (a) (b) (b) (b) (b) (b) (b) (b) 	CAL Test 13. 14. 15. 16. 17.	. ENG : 26/03/2 (a) (b) (a) (d) (b)	NE 2024 19. 20. 21. 22. 23.	ERING 4 (a) (c) (a) (a) (c)	25. 26. 27. 28. 29.	(c) (a) (b) (b) (a)

DETAILED EXPLANATIONS

1. (d)

For function to be differentiable i.e. continuous $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x)$

$$f(0^{-}) = \lim_{x \to 0^{-}} \frac{\sin(3p-1)x}{3x} \times \frac{(3p-1)}{(3p-1)}$$
$$= \lim_{x \to 0^{-}} \frac{\sin(3p-1)x}{(3p-1)x} \times \frac{(3p-1)}{3} = \frac{(3p-1)}{3}$$
$$f(0^{+}) = \lim_{x \to 0^{+}} \frac{\tan(3p+1)x}{2x} \times \frac{(3p+1)}{(3p+1)}$$
$$= \lim_{x \to 0^{+}} \frac{\tan(3p+1)x}{(3p+1)x} \times \frac{3p+1}{2} = \frac{3p+1}{2}$$

For function to be continuous,

$$\frac{3p-1}{3} = \frac{3p+1}{2}$$
$$p = -\frac{5}{3}$$

By solving, we get,

2. (b)

Weh

have

$$y' = e^{x} (A\cos x + B\sin x)$$

$$y' = e^{x} (A\cos x + B\sin x) + e^{x} (-A\sin x + B\cos x)$$

$$= y + e^{x} [-A\sin x + B\cos x]$$

$$y'' = y' + e^{x} (-A\sin x + B\cos x) + e^{x} (-A\cos x - B\sin x)$$

$$= y' + y' - y - y$$

$$= 2y' - 2y$$
Order = 2
Degree = 1

3. (a)

 \Rightarrow

 $\frac{dy}{dx} = e^{ax} \times e^{by}$ $\frac{dy}{e^{by}} = e^{ax} \times dx$ $\frac{e^{-by}}{-b} = \frac{e^{ax}}{a} + C$ y(0) = 0 $C = -\left[\frac{1}{b} + \frac{1}{a}\right] = -\left[\frac{a+b}{ab}\right]$

 \Rightarrow

4. (a)

 $\nabla \cdot \vec{F} = 0 \qquad [For solenoidal vector]$ $\frac{\partial(y^2 - z^2 + 3yz - 2x)}{\partial x} + \frac{\partial(3xz + 2xy)}{\partial y} + \frac{\partial(2xy - axz + 2z)}{\partial z} = 0$ -2 + 2x - ax + 2 = 0From here, a = 2

5. (a)

Greatest rate of increase of ϕ is magnitude of directional derivative at that point.

$$\nabla \phi = (2xyz + 4z^2)\hat{i} + x^2 z\hat{j} + (x^2y + 8xz)\hat{k}$$
$$\nabla \phi \Big|_{(1,-2,1)} = \hat{j} + 6\hat{k}$$

Greatest rate of increase = $\sqrt{1^2 + 6^2} = \sqrt{37} = 6.08$

6. (a)

[:	$\begin{bmatrix} 3 & 7.5 \\ -6 & 4.5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ -90 \end{bmatrix}$
$\begin{bmatrix} 3 & 7.5 & 6 \\ -6 & 4.5 & -90 \end{bmatrix}$]
$\begin{bmatrix} 3 & 7.5 & 6 \\ 0 & 19.5 & -78 \end{bmatrix}$]
or	19.5y = -78 y = -4
	3x + 7.5y = 6 3x + 7.5(-4) = 6
	3x = 36
⇒ ∴	$\begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} 12 \\ 4 \end{bmatrix}$
	$\lfloor y \rfloor \lfloor -4 \rfloor$

7. (b)

 $\lim_{x \to 0} \frac{\ln(1+5x)}{e^{7x} - 1} \qquad \left(\frac{0}{0} \text{ indetermine form}\right)$ Applying L' Hospitals rule

L'Hospitals rule

$$\ln(1+5x)$$
 . 5

$$\lim_{x \to 0} \frac{\ln(1+5x)}{e^{7x} - 1} = \lim_{x \to 0} \frac{5}{(1+5x)7e^{7x}} = \frac{5}{7}$$

8. (b)

Probability of first item being defective,

$$P_1 = \frac{15}{50}$$

Probability of second item being defective,

 $P_2 = \frac{14}{49}$

Probability of third item being defective,

$$P_3 = \frac{13}{48}$$

Probability that all three are defective,

$$P = P_1 P_2 P_3 = \frac{15}{50} \times \frac{14}{49} \times \frac{13}{48} = \frac{13}{560}$$

9. (a)

Given, $x = b(2 - \cos\theta)$, $y = b(\sin\theta + \theta)$

$$\frac{dx}{d\theta} = b\sin\theta,$$

$$\frac{dy}{d\theta} = b(\cos\theta + 1)$$

$$\frac{dx}{dy} = \frac{dx/d\theta}{dy/d\theta} = \frac{b\sin\theta}{b(\cos\theta + 1)}$$

$$= \frac{2b\sin\left(\frac{\theta}{2}\right).\cos\left(\frac{\theta}{2}\right)}{b \times 2\cos^2\left(\frac{\theta}{2}\right)} = \tan\left(\frac{\theta}{2}\right)$$

10. (b)

$$P(T) = 0.5$$

Probability of getting tails exactly 6 times is

$$8C_6(0.5)^6(0.5)^2 = \frac{7}{64}$$

11. (b)

India's Beet Institute for IES, GATE & PSUe

ME • Engineering Mathematics 9

12. (d)

$$IF = e^{\int f'(x)dx} = e^{f(x)}$$

 $y \times IF = \int IF \cdot f(x) \cdot f'(x) dx$

 $y \times e^{f(x)} = \int e^{f(x)} \cdot f(x) \cdot f'(x) dx$

Solution of differential equation,

Let

$$f(x) = t$$

$$f'(x) dx = dt$$

$$y \times e^{t} = \int e^{t} \cdot t dt$$

$$y \cdot e^{t} = t \cdot e^{t} - e^{t} + c$$

$$y = t - 1 + c e^{-t}$$

$$\log(y + 1 - t) = -t + c'$$

$$\log[y + 1 - f(x)] + f(x) = c'$$

13. (a)

For particular integral,

$$PI = \frac{96x^2}{D^2(D^2 + 4)} = 96\frac{1}{4D^2\left(1 + \frac{D^2}{4}\right)}x^2 = \frac{96}{4}\left[\frac{\left(1 - \frac{D^2}{4}\right)x^2}{D^2}\right]$$
$$= 24\frac{\left(x^2 - \frac{1}{2}\right)}{D^2}$$
$$PI = 24\left[\frac{x^4}{4 \times 3} - \frac{x^2}{4}\right] = 2x^2(x^2 - 3)$$
$$PI|_{x=2} = 2 \times 2^2(4 - 3) = 8$$

14. (b)

$$u(x, y) = 2x(1 - y)$$

$$dv = \frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy = -\frac{\partial u}{\partial y}dx + \frac{\partial u}{\partial x}dy$$

$$dv = (2x)dx + 2(1 - y)dy$$

$$v = x^{2} + 2y - y^{2} + c$$

15. (a)

$$\int_{-\infty}^{\infty} f(x)dx = 1$$
$$\int_{0}^{2} kx dx + \int_{2}^{4} 2k dx + \int_{4}^{6} (-kx + 6k) dx = 1$$

$$\frac{kx^2}{2}\Big|_0^2 + 2kx\Big|_2^4 + \left(\frac{-kx^2}{2} + 6kx\right)\Big|_4^6 = 1$$

$$\frac{k}{2}(2^2 - 0) + 2k(4 - 2) - \frac{k}{2}(6^2 - 4^2) + 6k(6 - 4) = 1$$

$$2k + 4k - 10k + 12k = 1$$

$$8k = 1 \implies k = \frac{1}{8}$$

Mean $= \int_{-\infty}^{\infty} xf(x)dx = \int_0^2 \frac{1}{8}x^2dx + \int_2^4 \frac{1}{4}xdx + \int_4^6 \left(-\frac{1}{8}x^2 + \frac{3}{4}x\right)dx$

$$= \frac{1}{8}\frac{x^3}{3}\Big|_0^2 + \frac{1}{4}\frac{x^2}{2}\Big|_2^4 - \frac{1}{8}\frac{x^3}{3}\Big|_4^6 + \frac{3}{4}\frac{x^2}{2}\Big|_4^6$$

$$= \frac{1}{3} + \frac{3}{2} - \frac{19}{3} + \frac{15}{2} = 3$$

16. (d)

Let

$$I = \int_{0}^{\pi/2} \sqrt{1 + \sec x} \, dx = \int_{0}^{\pi/2} \sqrt{1 + \frac{1}{\cos x}} \, dx$$
$$= \int_{0}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\sqrt{\cos x}} \, dx = \int_{0}^{\pi/2} \frac{\sqrt{2} \cos(x/2)}{\sqrt{1 - 2\sin^{2}(x/2)}} \, dx$$
$$\sin \frac{x}{2} = t, \qquad \begin{cases} x = 0, \quad t = 0\\ x = \frac{\pi}{2}, \quad t = \frac{1}{\sqrt{2}} \end{cases}$$
$$I = \int_{0}^{1/\sqrt{2}} \frac{2\sqrt{2}dt}{\sqrt{1 - 2t^{2}}}$$
$$= 2\sin^{-1} \left(\sqrt{2}t\right) \Big|_{0}^{1/\sqrt{2}} = 2\sin^{-1} \left(\sqrt{2} \times \frac{1}{\sqrt{2}}\right) - 2\sin^{-1}(0)$$
$$= 2 \times \frac{\pi}{2} = \pi = 3.14$$

17. (b)

$$(2y - 3x)dx + xdy = 0$$

$$\frac{dy}{dx} + \frac{2}{x}y = 3$$

$$IF = e^{\int \frac{2}{x}dx} = e^{2\ln x} = x^{2}$$

$$y \cdot x^{2} = 3\int x^{2}dx = x^{3} + C$$
For $x = 0, y = 0$

 $\Rightarrow \qquad 0 = 0 + c$ $\Rightarrow \qquad c = 0$ For x = 2, $y \times 2^2 = 2^3$ y = 2 18. (c)

$$\frac{4C_1 \cdot 4C_1 \cdot 4C_1}{52C_4} = \frac{4 \times 4 \times 4 \times 4}{(52 \times 51 \times 50 \times 49) / (4 \times 3 \times 2 \times 1)}$$
$$= \frac{4 \times 4 \times 4 \times 4 \times 3 \times 2}{52 \times 51 \times 50 \times 49} = \frac{256}{270725}$$

19. (a)

$$x = \sin\left(\frac{\pi k}{2}\right), y = \cos\left(\frac{\pi k}{2}\right)$$

Just by seeing, we can know that it represents a circle in x - y plane, given by $x^2 + y^2 = 1$

Given $0 \le k \le 1$, which gives $0 \le x \le 1$; $0 \le y \le 1$

 $0 \le \frac{\pi k}{2} \le \frac{\pi}{2}$

So we get a quarter circle, when this is rotated with respect to y-axis by 360 degree, it creates a hemisphere of radius 1.

Surface area of hemisphere,

$$A_S = 2\pi r^2$$

= $2\pi (1)^2 = 2\pi$

20. (c)

$$\begin{array}{rcl} f(y) &=& y^2 e^{-y} \\ f'(y) &=& y^2 \left(-e^{-y}\right) + e^{-y} \times 2y \\ &=& e^{-y} \left(2y - y^2\right) \end{array}$$

Putting f'(y) = 0

$$e^{-y}\left(2y-y^2\right) = 0$$

$$e^{-y}y(2-y) = 0$$

y = 0 or y = 2 are the stationary points

Now,

$$f''(y) = e^{-y} (2 - 2y) + (2y - y^{2})(-e^{-y})$$

$$= e^{-y} (2 - 2y - 2y + y^{2})$$

$$= e^{-y} (y^{2} - 4y + 2)$$
At $y = 0$,

$$f''(0) = e^{-0} (0 - 0 + 2) = 2$$

Since f''(0) = 2 is > 0 at y = 0 we have a minima

Now, at
$$y = 2f''(2) = e^{-2} (2^2 - 4 \times 2 + 2)$$

= $e^{-2} (4 - 8 + 2)$
= $-2e^{-2} < 0$

 \therefore At y = 2 we have a maxima.

21. (a)

$$P(x) = \frac{\mu^{x} e^{-\mu}}{x!}$$

$$P(x < 3) = P(0) + P(1) + P(2)$$

$$= \frac{\mu^{0} e^{-\mu}}{0!} + \frac{\mu^{1} e^{-\mu}}{1!} + \frac{\mu^{2} e^{-\mu}}{2!}$$

$$= \frac{1}{e^{\mu}} + \frac{\mu}{e^{\mu}} + \frac{\mu^{2}}{2e^{\mu}}$$

$$\mu(\text{mean}) = 6.8$$

As

...

$$P(x < 3) = \frac{1 + 6.8 + \left(\frac{6.8^2}{2}\right)}{e^{6.8}} = \frac{30.92}{897.85} \simeq 0.034$$

22. (a)

sinx cosydx + cosx sinydy = 0 Divide by cosx cosy, we get , tanx dx + tanydy = 0 Integrating the equation, log secx + log secy = C₁ $log \frac{1}{cosx cosy} = C_1$ cosx cosy = CSince it passes through $\left(0, \frac{\pi}{3}\right)$ $cos(0) cos\left(\frac{\pi}{3}\right) = C$ $\frac{1}{2} = C$ \Rightarrow The equation of curve is, $cosx cosy = \frac{1}{2}$ (c)

23. (c

 $P(x) = x^{5} + x + 2$ It has a real root at x = -1 $\Rightarrow \qquad P(x) = (x^{4} - x^{3} + x^{2} - x + 2) (x + 1)$ Now, $x^{4} - x^{3} + x^{2} + x + 2$ will give other 4 roots To find roots, $\Rightarrow \qquad x^{4} - x^{3} + x^{2} - x + 2 = 0$ India's Best Institute for IES, GATE & PSUs

24.

 $\Rightarrow x^3(x-1) + x(x-1) + 2 = 0$ $x(x^{2}+1)(x-1)+2 = 0$ \Rightarrow In the above expression, $x^2 + 1$ is always positive. So, either 'x' or 'x - 1' should be negative in order to satisfy the equation. For x > 1, both (x) and (x - 1) are positive and, For x < 0, both (x) and (x - 1) are negative \therefore x should lie within 0 and 1 in order to have real roots. As $x \in (0, 1)$ |x| < 1 $|x^{2} + 1| < 2, |x| < 1 \text{ and } |x - 1| < 1$ \Rightarrow \Rightarrow ... The product of these three will be less than 2 and hence, no real value of 'x' can satisfy the equation $x^4 - x^3 + x^2 - x + 2 = 0$: The equation will have four imaginary roots apart from one real roots. (a) $I = \int \sec^3 \theta d\theta = \int \sec \theta . \sec^2 \theta d\theta$ = $\sec\theta \int \sec^2\theta d\theta - \int \tan\theta (\sec\theta \tan\theta) d\theta$ = $\sec\theta \tan\theta - \int \tan^2\theta \sec\theta d\theta$ $I = \sec\theta \tan\theta - \int (\sec^2\theta - 1) \sec\theta d\theta$ \Rightarrow = $\sec\theta \tan\theta - \int \sec^3\theta d\theta + \int \sec\theta d\theta$ $I = \sec\theta \tan\theta - I + ln|\sec\theta + \tan\theta| + c$ \Rightarrow $I = \frac{1}{2}\sec\theta\tan\theta + \frac{1}{2}ln|\sec\theta + \tan\theta| + c$ \Rightarrow $a+b = \frac{1}{2} + \frac{1}{2} = 1$... (c)

For curve C,
and

$$\int_{C} F dr = \int_{C} x^{2}y^{2}dx + y dy$$
For curve C,

$$y^{2} = 4x$$

$$2y dy = 4 dx$$

$$\Rightarrow \qquad \int_{C} \overline{F} dr = \int_{0}^{4} x^{2}(4x)dx + 2dx$$

$$= \int_{0}^{4} (4x^{3} + 2)dx = 264$$

c _ ___

26. (a)

25.

To obtain maximum value of f(x), first f'(x) should be equated to zero.

•

 $f'(x) = 6x^2 - 6x - 36 = 0$ \Rightarrow $x^2 - x - 6 = 0$ \Rightarrow (x-3)(x+2) = 0 \Rightarrow f'(x) = 0at x = 3 and -2... f''(x) = 12x - 6Now, f''(3) = 30 > 0at x = 3, there is local minima and f''(2) = -30 < 0 \therefore at x = -2, a local maxima is observed.

27. (b)

Length of curve = $\int_{0}^{1} \sqrt{1 + \left(\frac{dx}{dy}\right)^{2}} dy$ Curve: $3x^{2} = y^{3}$ $\Rightarrow \qquad \frac{dx}{dy} = \frac{\sqrt{3y}}{2}$ $\therefore \qquad \text{Length} = \int_{0}^{1} \sqrt{1 + \frac{3y}{4}} dy$ $= \frac{1}{2} \int_{0}^{1} \sqrt{4 + 3y} dy$ $= \frac{1}{2} \left[\frac{\left(4 + 3y\right)^{3/2}}{\frac{3}{2} \times 3} \right]_{0}^{1}$ $= \frac{1}{9} \left(7\sqrt{7} - 8\right)$

28. (b)

Point of inter-section of the two curves are x = 0, 1, -1

Area =
$$\int_{-1}^{0} (x^3 - x) dx = \left[\frac{x^4}{4} - \frac{x^2}{2} \right]_{-1}^{0} = \frac{0 - (-1)^4}{4} - \frac{0 - (-1)^2}{2} = \frac{1}{4}$$

29. (a)

> $(x+1)\frac{dy}{dx}+1 = 2e^{-y}$ $(x+1)\frac{dy}{dx} = (2e^{-y}-1)$ \Rightarrow $\frac{dy}{\left(2e^{-y}-1\right)} = \frac{dx}{x+1}$ \Rightarrow $\frac{e^{y}dy}{2-e^{y}} = \frac{dx}{x+1}$ \Rightarrow $-\log (2 - e^y) = \log (x + 1) + c$ \Rightarrow $(x + 1)(2 - e^{y}) = k$ \Rightarrow

30. (c)

 \Rightarrow

 \Rightarrow

 $D^2 y = y$ $(\therefore d/dx = D)$ $(D^2 - 1)y = 0$ $D^2 - 1 = 0$ $D = \pm 1$ $y = C_1 e^x + C_2 e^{-x}$ Given point passes through origin $0 = C_1 + C_2$ $C_1 = -C_2$...(i)

Also, point passes through (In 2, 3/4)

 $\frac{3}{4} = C_1 e^{\ln 2} + C_2 e^{-\ln 2}$ \Rightarrow $\frac{3}{4} = 2C_1 + \frac{C_2}{2}$ $C_2 + 4C_1 = 1.5$...(ii) \Rightarrow $C_1 = -C_2$, putting in (ii), we get $-3C_2 = 1.5$ $C_2 = -0.5$ $C_1 = 0.5$ From (i) \Rightarrow *.*.. $y = 0.5 (e^x - e^{-x})$ \Rightarrow $y = \frac{e^x - e^{-x}}{2}$

 $\frac{d^2y}{dx^2} = y$

####