
1. (d)

2. (d)

3. (d)

4. (b)

5. (b)

6. (b)

7. (a)

8. (b)

9. (c)

10. (c)

11. (c)

12. (d)

13. (b)

14. (c)

15. (a)

16. (a)

17. (c)

18. (d)

19. (b)

20. (c)

21. (a)

22. (c)

23. (c)

24. (b)

25. (d)

26. (d)

27. (d)

28. (c)

29. (c)

30. (c)

ANSWER KEY

Theory of Computation

COMPUTER SCIENCE & IT

Date of Test : 23/10/2023

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST S.No.:01SKCS_ABCDE_20052024

© Copyright : www.madeeasy.in

7• Theory of ComputationTheory of ComputationTheory of ComputationTheory of ComputationTheory of ComputationCS

DETAILED EXPL ANATIONS

1. (d)
L = {1mm ≥ 0 and m ≠ 3}

1 1 1 1

1

Therefore, total 4 final states and 5 states.

2. (d)
L = {x ∈ {0, 1}*x ends with 0 and not contains 2 consecutive 1’s}

R.E. = (0 + 10)* (0 + 10)
= (0 + 10)+

1

1

0

0

0

1

0, 1

So, option (d) is correct.

3. (d)
L = {an : n = 2, 3, 4, 6, 8, 10}

a aq0 q4 q5

a

a

DFA

aq3q2
aq1

Total 6 states are required.

4. (b)
Prefix (L) = {∈, b, ba, bab, baba}
Suffix (L) = {∈, a, ba, aba, baba}

A = {∈, b, ba, bab, baba} ∩ {∈, a, ba, aba, baba}
A = {∈, ba, baba}

There are 3 strings present in language A.

5. (b)
The minimized DFA after combining the q1, q2 and q3 are given below.

q0 q1q q2 3 q4
a, b

b

a

a, b

6. (b)
Check the string one by one starting from ∈, 0, 1, 00, 01,... until we reach the first string that is not
generated by the given regular expression. In this case, smallest string not generated by the given
regular expression is ‘0110’ whose length is 4.

© Copyright :www.madeeasy.in

8 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

7. (a)
• S1 is correct and S2 is incorrect.
• S1 can be written as (000)n where n ≥ 1. Regular grammar for S1 is S → S000/000. Hence S1 is

regular.
• S2 can be written as (00)(x + y) where x ≥ 1 and y ≥ 1. S2 can be further reduced to (00)x where

x ≥ 2. Regular grammar for S2 is S → S00/0000. Hence S2 is also regular language.

8. (b)
INIT(L) is a function which contain all the prefix strings of the language 1.
So, INIT(L) = {∈, a, b, ab, ba, aba, abab}

9. (c)
The minimum pumping length is 3. The pumping length cannot be 2 because the string 11 is in the
language and it cannot be pumped. Let s be a string in the language of length at least 3. If s is
generated by 0* 1+ 0+ 1*, we can write it as xyz, where x is the empty string, y is the first symbol
of s and z is the remainder of s. Breaking s up in this way shows that it can be pumped. If s is
generated by 10* 1, we can write it as xyz, where x = 1 and y = 0 and z is the remainder of s. This
division gives a way to pump s.

10. (c)
L = {an bmn ≥ 4; m ≤ 3}

Lc = {an bmn < 4 or m > 3} ∪ {x ba xx ∈ (a + b)*}
or

So, Lc = (∈ + a + aa + aaa)b* + a*bbbbb* + (a + b)* ba(a + b)*

11. (c)
L1 /L2 = bba*baa* / ab*

= bba*baa* / a
= bba*baa*

12. (d)
The transition diagram of the PDA is as shown below. In the figure σ, σ1 and σ2 represent a or b.

q0 q1
(,)c σ σ

(,)σ σ ∈
(,) σ Z0 σ
σ σ σ σ

Z0

1 2 2(,)

 1

q2
(,)∈ Z Z0 0

PDA accepting {wcwRw ∈ (a, b)* and w ≥ 1}.

13. (b)
The following are DFAs for the two language {ww has exactly two a’s} and ww has at least two
b’s}:

b b b a b,

a a a

a a a b,

b b

© Copyright : www.madeeasy.in

9• Theory of ComputationTheory of ComputationTheory of ComputationTheory of ComputationTheory of ComputationCS

Combining them using the intersection construction gives the DFA:

b

a a a a

a a a a

b b b

b

a a a a b,

b b b

bbb
Certain steps can be minimized

b

a a

a a a a b,

b b

b

a a
a

b b

bbb

a

Hence total 10 states required.

14. (c)
Given PDA is NPDA, hence two comparison with or is possible. If you observe the automata, at
q2 for every input ‘a’ there is two transition on epsilon which proves it is NPDA. The upper branch
comparing a with b and lower branch comparing a with ‘c’ and both leads to the final states.
L accepts epsilon as well. Hence L = {ai bj cki, j, k ≥ 0 and i = j or i = k}.

15. (a)
Since grammar is right linear regular grammar, convert it to machine.

S A

B C

bbbb

a

a

a

a
Language is (a) na(w) and nb(w) both are even.

16. (a)
• Context free languages are not closed under complementation and intersection.

Hence option (b) and (c) is false.
• DPDA is less powerful than PDA. Hence there is CFL language which can not be accepted by

DPDA.
Hence option (d) is false.

17. (c)
S1 : True
S2 : True
S3 : False, checking regularity of TM is undecidable.

© Copyright :www.madeeasy.in

10 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

18. (d)
(R1) = (a*ba*ba*ba*)*

It represents language that contain strings in which number of b’s is multiple of 3 with any number
of a.

(R2) = (a*ba*ba*)*
It represents language that contain strings in which number of ‘b’ are in multiple of 2 with any
number of a.
So, (R1) ∩ (R2) = (a*ba*ba*ba*ba*ba*ba*)*
Represent string that contain number of b’s in multiple of 6 with any number of a’s.

19. (b)
Turing-recognizable languages:
• TM halts in an accepting configuration if w is in the language.
• TM may halt in a rejecting configuration or go on indefinitely if w is not in the language.
Turing-decidable languages:
• TM halts in an accepting configuration if w is in the language.
• TM halts in a rejecting configuration if w is not in the language.

20. (c)
L = L1 ∩ L2

L = {0m 1mm ≥ 0} which is CFL but not regular because there is a infinite comparison.

21. (a)
• If there is no context free grammer for L which is unambiguous. Hence L is inherently

ambiguous or in other words “A language for which every grammar is ambiguous is called
inherently ambiguous language”.
Note: If a language is regular or DCFL it will surely can be written in unambiguous grammar.

DCFL

Reg

Unambiguous
language

• So, surely L3 can’t be inherently ambiguous language as it is regular language.
• L2 is not inherently ambiguous language as we can write grammar for L2 which is unambiguous.

S → aSabSb∈
• L1 is CFL and it is inherently ambiguous language because L1 is language with union of two

DCFL. So the grammar will always have OR operation which will make them ambiguous.
Let’s see how we can write grammar.

S → XY
X → aXcP
P → bP∈
Y → aYbQ
Q → cQ∈

If we generate string ‘abc’ two parse tree possible either through X or Y.
Hence it is ambiguous and leads to inherently ambiguous language.

© Copyright : www.madeeasy.in

11• Theory of ComputationTheory of ComputationTheory of ComputationTheory of ComputationTheory of ComputationCS

22. (c)
S → ABA
A → aAbA∈
B → bbbbB

• A generates (a + b)*
• B generates (bb)+

So, S → (a + b)* (bb)+ (a + b)*
So, correct option is (c).

23. (c)
• In option (a) both P and S are final states and cannot generate language L hence not correct.
• In option (b) S is the final state and cannot generate language L hence not correct.
• In option (c) P is the final state as well as initial state and correctly generates the language L.

P → aQ bR∈∈∈∈∈
Q → bS aP
R → aS bP
S → aR bQ
The machine will be

P Q

R S

a

a

b b

a

a

b b

• Option (d) is wrong because there is no final state.

24. (b)
The given PDA, M = ({q0, q1, q2}, {a, b}, {0, 1}, δ, q0, 0, {q0}) where 6th tuple represents the start stack
symbol. So here in this case 0 is start stack symbol

b, 1, λa |, 1 11

a, 0 10|

λ λ, 0,

b, 1/λq0 q1 q2

This depicts that on every ‘a’ in the string ‘1’ is pushed on the stack and stack is popped on every
‘b’. Hence we need an bn. Now since initial state is also the final state.
So, L = {an bn n ≥ 0}

25. (d)
Given, L = {an bm(n + m) is even}
For (n + m) to be even either n and m both are even or n and m both are odd.
Therefore the Regular Expression (R.E.) = {(aa)* (bb)* + (aa)*a (bb)*b}
• So, for n and m to be even, grammar is:

S1 → aaS1A1
A1 → bbA1∈

• For n and m odd, grammar is:
S2 → aaS2aA2
A2 → bbA2b

© Copyright :www.madeeasy.in

12 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

Now, combine both; then resultant grammar is:
S → S1S2
S1 → aaS1A1
A1 → bbA1∈
S2 → aaS2aA2

A2 → bbA2b

26. (d)
Considering each statement:
CSL are closed under intersection therefore S1 is true.
Turing decidable language are closed under union and Kleene star operation therefore S2 is true.
Turing recognizable languages are not closed under complementation therefore S3 is false.

27. (d)
1. L1 = DCFL and complement of DCFL is DCFL because DCFL is closed under complementation.
2. L2 = CSL and complement of CSL is CSL because CSL is closed under complementation.
3. L1 ∩ L2 = DCFL ∩ CSL

= DCFL↑ ∩ CSL(Push DCFL upto CSL in Chomsky hierarchy because
operation performed between same language)

= CSL ∩ CSL = CSL
4. L1

C
 ∩ L2

C = (DCFL)C ∩ (CSL)C

= DCFL ∩ CSL
= CSL ∩ CSL = CSL

So all statements are true.

28. (c)
Traversing the states of the Turing Machine, it can be seen that for every ‘a’ as the input, it is
accepting 3 b’s. For every ‘a’ machine writes ‘X’ on the tape, then take right moves till it reaches
‘b’. For every 3 b’s it writes symbol Y.
Hence accepting the language L = {am bn3m = n; m, n ≥ 0}.

29. (c)
Considering each option:
S1 : Since “hello” is reducible to “world” and “world” is decidable, then “hello” is also decidable.
S2 : Since, language specifies that, n ≤ 10 and q < n and 2020 is a finite number that means L is

regular, hence CFL too.

30. (c)
Only S3 is true:
• Finiteness property of a CFG is decidable, which can be decidable with the help of variable

dependency graph.
• Push-down automata need not be always deterministic. In fact power of non-deterministic

PDA is greater than the deterministic.
• Deterministic CFL are closed under complement, hence recursive too.
• DCFL is not closed under union.

