

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

ANALOG ELECTRONICS

ELECTRICAL ENGINEERING

Date of Test: 27/05/2024

ANSWER KEY >

1.	(a)	7.	(d)	13.	(b)	19.	(b)	25.	(c)
2.	(d)	8.	(c)	14.	(d)	20.	(d)	26.	(b)
3.	(b)	9.	(c)	15.	(c)	21.	(d)	27.	(d)
4.	(d)	10.	(b)	16.	(a)	22.	(d)	28.	(c)
5.	(a)	11.	(b)	17.	(a)	23.	(b)	29.	(a)
6.	(d)	12.	(b)	18.	(c)	24.	(a)	30.	(b)

DETAILED EXPLANATIONS

1. (a)

On applying short circuit test, D_1 and D_2 are replaced by short circuit

On applying Nodal analysis

$$\frac{V}{2} + \frac{V + 10}{1} = 5$$

$$3 V = -10$$

$$V = \frac{-10}{3}$$

$$I_1 = \frac{V}{2} = \frac{-10}{6} \text{mA} < 0$$
So, D_1 off,
$$I_2 = 5 \text{ mA}$$

2. (d)

Relationship between reverse saturation current and temperature can be given as

$$\frac{I_2}{I_1} = \frac{2^{\left(\frac{T_2}{10}\right)}}{2^{\left(\frac{T_1}{10}\right)}} = 2^{\left(\frac{T_2 - T_1}{10}\right)}$$

 $I \propto 2^{(T/10)}$

$$I_{1} = 2^{\left(\frac{1}{10}\right)}$$

$$\frac{I_{2}}{I_{1}} = 2^{\left(\frac{T_{2} - T_{1}}{10}\right)}$$

$$T_{2} - T_{1} = 3^{\circ} C$$

$$I_{2} = I_{1} \times 2^{(3/10)} = 1.23 I_{1}$$

$$I_{2} = I_{1} \times 123\%$$

So, % increased in $I_2 = 23\%$

3. (b)

From the diode circuit,

$$I_D = \frac{V_i - V_{DO}}{r_d} = \frac{V_i}{r_d} - \frac{V_{DO}}{r_d} \rightarrow \text{shows the PWL model of diode}$$

So, option (b) shows the best characteristics of above diode circuit.

4. (d)

When
$$V_{\text{in}} > 2.7$$
, $D \rightarrow \text{ON}$, $V_0 = V_i - 0.7 \text{ V}$
 $V_{\text{in}} < 2.7 \text{ V}$, $D \rightarrow \text{OFF}$, $V_0 = 2 \text{ V}$

5. (a)

As we know,

$$Gain \times Bandwidth = Constant$$
 ...(1)

Closed loop gain with -ve feedback is

$$A_{CL} = \frac{A_{OL}}{1 + A_{OL}\beta}$$
 (A_{OL} = Open loop gain; β = Feedback factor)

Given: $A_{OL} = 100, (BW)_{OL} = 100 \text{ kHZ}$

From eqn. (1), $A_{OL}(BW)_{OL} = A_{CL}(BW)_{CL}$

$$100 \times 10^5 = \frac{100}{1 + 100\beta} \times 10^6$$

$$1 + 100\beta = 10$$

 $\beta = 0.09$

6. (d)

Let $V_o(t) = V_m \sin \omega_m t$

S.R. =
$$\left| \frac{dV_o(t)}{dt} \right|_{\text{max}} = V_m \omega_m \cos \omega_m t = V_m \omega_m$$

$$5 = V_m(2\pi \times 10^7)$$

$$V_m = \frac{5}{20\pi} = \frac{1}{4\pi} \text{ Volts}$$

So, the largest sine wave output possible at a frequency of 10 MHz is $\frac{1}{4\pi}$ volts.

7. (d)

As we know,

$$V_{o} = A_{OL}(V^{+} - V^{-})$$

Since,

$$A_{OL} = \infty$$
 (for ideal Op-Amp)

So,

$$V^+ = V^- = V_{\rm in}$$

On applying KCL at inverting terminal

$$\frac{V^{-}}{3} + \frac{V^{-} - V_o}{2} = 0$$

$$2V^- + 3V^- - 3V_o = 0$$

$$5V_{\rm in} = 3V_o$$

$$V_o = \frac{5}{3}V_{\rm in} = A_V.V_{\rm in}$$

$$\frac{V_o}{V_{in}} = A_V = \frac{5}{3}$$

8. (c)

It is non-inverting amplifier.

The gain,
$$K = 1 + \frac{R_F}{R_1}$$

where,
$$R_F = R_Y$$

$$R_1 = R_X$$

So, gain
$$K = 1 + \frac{R_Y}{R_X}$$

9. (c)

$$V_{GS} = 2 - 0.5$$

= 1.5 > V_{Th}

MOSFET is ON

Assume,
$$V_{DS} \geq V_{GS} - V_t \text{ (current saturation)}$$

$$2 - 0.5 \geq 2 - 0.5 - 0.4$$

$$1.5 \geq 1.1$$

MOSFET is in current saturation.

10. (b)

Assuming initially all diodes are ON and can be replaced by short circuit,

$$I_1 = I_3 = \frac{10 - (-10)}{8k\Omega} = \frac{20}{8k\Omega} = 2.5 \text{ mA}$$

as no current is drawn from ground

$$I_2 = 0$$

 $\therefore D_2$ is in off state.

11.

As current flows in both diodes from anode to cathode

Voltage across each parallel branch

$$V_p = 0.7 + (4 \text{ k}) (I_D)$$

By KVL in main loop,

$$-10 + 0.7 + (4 \text{ k}) (I_D) + 4 \text{ k}(2I_D) = 0$$

$$-10 + 0.7 + 12 \text{ k} I_D = 0$$

$$12 \text{ k}(I_D) = 9.3$$
or
$$I_D = 0.775 \text{ mA}$$
So, output voltage, $V_0 = (2I_D) \times 4 \text{ k}\Omega$

$$= 2 \times 0.775 \times 10^{-3} \times 4 \times 10^3$$

$$= 6.2 \text{ V}$$

Alternate Solution:

12. (b)

$$V_0 = 0 - (2 \times 10^{-3} \times 4 \times 10^3) = -8 \text{ V}$$

Applying KCL at output node

$$I + 2 \text{ mA} = \frac{V_0}{4 \text{k}\Omega}$$

$$I = -2 \text{ mA} - \frac{8}{4 \text{k}\Omega} = -4 \text{ mA}$$

13. (b)

Circuit can be redraw as

For non inverting configuration,

$$V_0 = \left(1 + \frac{R_f}{R_1}\right) V_s = (1+1) 5$$
= 10 V

Applying KCL at node-O,

$$\begin{split} \frac{5-10}{1 \text{k} \Omega} + I_0 + \frac{0-10}{1 \text{k} \Omega} &= 0 \\ \frac{-5}{1 \text{k} \Omega} + I_0 - \frac{10}{1 \text{k} \Omega} &= 0 \\ I_0 &= 15 \text{ mA} \end{split}$$

14. (d)

Given,

$$\begin{split} R_1 &= 14 \text{ k}\Omega, \\ R_2 &= 6 \text{ k}\Omega, \\ R_S &= 0.5 \text{ k}\Omega, \\ R_D &= 1.2 \text{ k}\Omega \\ V_G &= \frac{R_2}{R_1 + R_2} \times 10 + \frac{R_1}{R_1 + R_2} (-10) \\ &= \frac{6 \times 10}{20} - \frac{14}{20} \times 10 = -4 \text{ V} \end{split}$$

As transistor operating in saturation

$$I_D = \frac{V_S - (-10)}{R_S} = \frac{V_G - V_{GS} + 10}{R_S} = K_n (V_{GS} - V_{TN})^2$$

$$K_n = \frac{K'_n}{2} \frac{W}{L} = \frac{(60)(60 \times 10^{-6})}{2} = 1.8 \text{ mA/V}^2$$

$$(1.8 \times 10^{-3})(V_{GS} - 2)^2 \times 0.5 \times 10^3 = -4 - V_{GS} + 10$$

$$0.9(V_{GS}^2 + 4 - 4 V_{GS}) = 6 - V_{GS}$$

$$0.9V_{GS}^2 + 3.6 - 3.6V_{GS} = 6 - V_{GS}$$

$$0.9V_{GS}^2 - 2.6V_{GS} - 2.4 = 0$$

$$\Rightarrow V_{GS} = 3.62 \text{ V}, -0.73 \text{ V}$$
As V_{GS} is +ve so correct value $V_{GS} = 3.62 \text{ V}$

$$I_D = \frac{V_G - V_{GS} + 10}{R_S}$$

$$I_D = \frac{v_G - v_{GS} + 10}{R_S}$$
$$= \frac{-4 - 3.62 + 10}{500} = 4.76 \text{ mA}$$

15.

For given figure, when V_{in} is negative

Output is zero

When $V_i(t)$ is positive

At t = 15 msec

The capacitor voltage and source voltage together will appear at the output:

$$12 V + 12 V = 24 V$$

16. (a)

As we know for a *n-p-n* BJT transistor

$$V_{CE} = V_{BE} + V_{CB}$$

= 0.7 + 0.2 = 0.9 V

Since,
$$V_{CE} > 0.2 \ [V_{CE(sat)} = 0.2 \ V]$$

Therefore transistor is operating in active region.

17. (a)

As we know,

$$I_{S} = I_{Z} + I_{L}$$

$$I_{Z} = I_{S} - I_{L}$$

$$I_{Z \text{ (min)}} = I_{S \text{ (min)}} - I_{L \text{ (max)}}$$

$$2 \text{ mA} = I_{S \text{ (min)}} - 4 \text{ mA}$$

$$I_{S \text{ (min)}} = 6 \text{ mA}$$

$$\frac{V_{i(\text{min})} - V_{Z}}{R_{S}} = 6 \text{ mA}$$

and

$$\frac{n_{0} - V_{Z}}{R_{S}} = 6 \text{ mA}$$

$$V_{i \text{ (min)}} = 6 \times 5 + 50 = 80 \text{ V}$$

$$I_{Z \text{ (max)}} = I_{S \text{ (max)}} - I_{L \text{ (min)}} \Rightarrow I_{s \text{(rms)}} = 8 \text{ mA}$$

$$8 = \frac{V_{i \text{ (max)}} - V_{Z}}{R_{S}} \Rightarrow V_{i \text{ (max)}} = 8 \times 5 + 50 = 90 \text{ V}$$

18. (c)

As we know,
$$V_{CE} = V_{BE} + V_{CB} \qquad [\because V_C = V_B \Rightarrow V_{CB} = 0 \text{ V}]$$

$$V_{CE} = 0.7 \text{ V}$$

$$V_B = V_{BE} + V_E$$

$$I_C = \frac{6 - V_C}{10} = \frac{6 - 0.7 - V_E}{10} = 50I_B$$

$$5.3 - 500 I_B = V_E$$
 Also
$$V_E = 51 I_B \times 1$$
 Therefore,
$$51 I_B + 500 I_B = 5.3$$

$$I_B = 9.61 \times 10^{-3} \text{ mA}$$

$$I_C = \beta I_B = 9.61 \times 10^{-3} \times 50 = 0.48 \text{ mA}$$

 $V_C = 6 - I_C \times 10$ Hence, $= 6 - 0.48 \times 10 = 1.19 \text{ V}$

 $V_B = V_C = 1.19 \text{ V}$ Therefore,

19. (b)

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = \frac{\partial}{\partial V_{GS}} \left[K_n (V_{GS} - V_{th})^2 \right]$$
$$= 2K_n (V_{GS} - V_{th})$$

20. (d)

Laplace equivalent circuit,

$$\frac{V_0(s)}{V_i(s)} = \frac{-R_2 \parallel \left(\frac{1}{sC}\right)}{R_1}$$

$$\frac{V_0(s)}{V_i(s)} = \frac{-R_2}{R_1} \times \frac{1}{1 + sCR_2}$$

It is low pass filter with, $\omega_c = \frac{1}{R_2C}$

So,
$$f_c = \frac{1}{2\pi R_2 C}$$

21. (d)

$$Q = 0.5\sqrt{\frac{C_2}{C_1}} = 0.5\sqrt{\frac{1.64 \text{ nF}}{820 \text{ pF}}} = 0.707$$

The pole frequency,

$$f_p = \frac{1}{2\pi R \sqrt{C_1 C_2}} = \frac{1}{2\pi (30) \times 10^3 \sqrt{820 \times 1.64 \times 10^{-21}}}$$
$$= 4.58 \text{ kHz}$$

Here Q = 0.707 tells us that this is a butterworth response, so cutoff frequency is the same as the pole frequency,

$$f_c = f_p = 4.58 \text{ kHz}$$

22. (d)

- In the circuit R_E provides feedback to the circuit, the feedback is directly connected to the output node. So voltage sampling.
- The feedback is not directly connected to input node, so series mixing. So, feedback topology is voltage series feedback.

23. (b)

Applying KVL, we get

$$-V_{CC} + (I_B + I_C)R_C + I_B R_B + V_{BE} = 0$$

$$I_B = \frac{V_{CC} - I_C R_C - V_{BE}}{R_C + R_B}$$

Now,
$$\frac{dI_B}{dI_C} = \frac{-R_C}{R_C + R_B}$$

$$S = \frac{1+\beta}{1-\beta\left(\frac{dI_B}{dI_C}\right)} = \frac{1+\beta}{1+\frac{\beta R_C}{(R_C+R_B)}}$$

24. (a)

The diode current,
$$I_D = \frac{2.8 - 0.8}{2} = 1 \text{ mA}$$

The thermal voltage,
$$V_T = \frac{KT}{e} = \frac{1.38 \times 10^{-23} \times 300}{1.6 \times 10^{-19}} = 25.87 \text{ mV}$$

The dynamic resistance,
$$r_d = \frac{\eta V_T}{I_d} = \frac{2 \times 25.87}{1}$$

$$r_d = 51.75 \ \Omega \approx 52 \ \Omega$$

25. (c)

By concept of virtual short,

$$V^{+} = V^{-} = 0 \text{ V}$$

$$R_i = \frac{V_s}{I_l} = 20 \text{ k}\Omega$$

26. (b)

For Silicon diode,
$$\frac{dV}{dT} \approx -2.5 \text{ mV/}^{\circ}\text{C}$$

Here,
$$dV = 640 - 700 = -60 \text{ mV}$$

So,
$$dT = \frac{dV}{-2.5} = \frac{-60}{-2.5} = 24$$

So,
$$T^{\circ} = T_1 + dT = 30^{\circ} + 24^{\circ}$$

 $T = 54^{\circ} \text{ C}$

27. (d)

The Thevenin voltage,
$$V_{\text{Th}} = \frac{30}{30+70} \times 20 = 6 \text{ V}$$

The Thevenin resistance $R_{\rm Th} = 30 \, \big\| 70 = 21 \, \mathrm{k}\Omega$

The equivalent circuit

The operating state of BJT will be decided by value of R_C . According the value of R_C . BJT may be in active state or saturation state. So, $I_{\rm C}$ can not be found out.

28. (c)

The base current,

$$I_B = \frac{V_{BB} - V_{BE}}{R_B + (1+\beta) R_E} = \frac{5 - 0.7}{500 + (1+100) \times 0.2}$$

$$I_B = 8.266 \, \mu A$$

So, collector current,

$$I_C = \beta I_B = 0.8266 \text{ mA}$$

KCL at node (1),

$$I_C + \frac{V_o}{10} + \frac{V_o - 10}{5} = 0$$

$$0.8266 + \frac{V_o}{10} + \frac{V_o - 10}{5} = 0$$

$$V_0 = \frac{2 - 0.8266}{\left(\frac{1}{10} + \frac{1}{5}\right)} = 3.911 \text{ Volt}$$

and

$$V_{CE} = V_o - V_E = 3.911 - 8.266 \times 10^{-3} \times 101 \times 0.20$$

 $V_{CE} = 3.744 \text{ V} > 0.2$

So, BJT is in active mode.

$$V_o = 3.91 \text{ Volt}$$

29. (a)

Applying KVL in the base-emitter loop

$$+V_{BE}-V_{CC}+(I_C+I_B)R_C+I_B\,R_B+(I_C+I_B)\,(R_E)=0$$

Difference w.r.t. I_C

$$\left(1 + \frac{\partial I_B}{\partial I_C}\right) (R_C + R_E) + \frac{\partial I_B}{\partial I_C} R_B = 0$$

$$\frac{\partial I_B}{\partial I_C} = -\frac{(R_C + R_E)}{R_C + R_B + R_E}$$

$$\frac{\partial I_B}{\partial I_C} = \frac{-(20 + 30)}{100 + 20 + 30} = -\frac{1}{3}$$
So, stability factor,
$$S = \frac{1 + \beta}{1 - \beta \frac{\partial I_B}{\partial I_C}} = \frac{1 + 99}{1 - 99\left(-\frac{1}{3}\right)} = 2.94$$

30. (b)

The diode conducts when V_s exceeds 12 V, as shown above, The conduction angle is 2 θ , where θ is given by

$$24 \cos \theta = 12$$
$$\theta = 60^{\circ}$$

and the conduction angle is 120°

That is $\frac{1}{3}$ of a cycle.

www.madeeasy.in