
1. (b)

2. (b)

3. (d)

4. (d)

5. (c)

6. (a)

7. (d)

8. (a)

9. (c)

10. (d)

11. (d)

12. (a)

13. (d)

14. (b)

15. (b)

16. (b)

17. (d)

18. (c)

19. (d)

20. (b)

21. (d)

22. (c)

23. (c)

24. (c)

25. (a)

26. (d)

27. (d)

28. (d)

29. (c)

30. (a)

ANSWER KEY

COMPLIER DESIGN

COMPUTER SCIENCE & IT

Date of Test : 07/06/2024

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST S.No.:01SKCS_ABCDEF_070624

© Copyright :www.madeeasy.in

8 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

DE TAILED EXPL ANATIONS

1. (b)
• Lexical analyzer scan the source code as a stream of characters and counts it into meaning full

lexemes.
• Syntax analyzer checks the token arrangement against the source code grammar.
• Semantic analyzer check whether the parse tree constructed follows the rules of language.
• Code optimizer do code optimization of the intermediate code.

2. (b)
S → S × EE
E → F + EF
F → id

1. For expression “id × id × id”.

S

id

E

id

id×

S E

S
LHS

So, ‘×’ is left associative.
2. For expression “id + id + id”.

E

id

F

id

id +

EF

E
RHS

+

S

So, ‘+’ is left associative.

3. (d)
• Live variable analysis needed in register allocation and deallocation.
• Basic block does not contain jump into middle of the block i.e. sequence of instruction where

control enter the sequence at begin and exist at end.
• Three address code is linear representation of syntax tree.
• With triple, optimization cannot change the execution order but with indirect triple we can.

4. (d)
String given: “xxxyxy”

S ZZ Z Z Z Z Z → x xy xx xy xxx xy xxxyxy→ → → → → → x xy Z

Handle {Z Z}x→

• ZxZ is not handle i.e. cannot reduce to any variable.
• Zxy is not handle i.e. cannot reduce to any variable.
• xZxy is not handle i.e. cannot reduce to any variable.
• xZ is handle since xZ reduce to Z in next step.

© Copyright : www.madeeasy.in

9• Compiler DesignCompiler DesignCompiler DesignCompiler DesignCompiler DesignCS

5. (c)
int main ()
1 2 3 4

{
5

int m ;
6 7 8 9

= 10
10

int

n

n

=

;

;

,

++

n1

m
11

16

12

17

13

18

14

19

15

20

n1 = ;++m
21 22 23 24 25
n ;––
26 27 28

n1 ;––
29 30 31
n ;–=
32 33 35

n1
34

printf ;,
36

n(
37

"% "d
38 39 40

)
41 42

return
43

0
44

;
45

}
46

Number of tokens are 46.
6. (a)

aaab → 2
cc → 3

 abbb → 2
7. (d)

In case of y, the translation on RHS of production is defined in terms of translation of nonterminal
on the left. So, y is inherited.
In case of x, translation of nonterminal on the left side of production is defined as function of
translation of non-terminals on right hand side. So, x is synthesized

8. (a)
SLR Parser:

S′
S .V
S .aSc
V .bV
V .d

 →
 →
 →
 →

→ .S

a

V

S S.′ →
S

S V. →

S
S .V
S .aSc
V .d
V .bV

 →
 →
 →
 →

→ a.Sc

V

V d. →

d

S aS.c →
S

S aSc. →
c

V
V .d
V .bV

 →
 →

→ b.V

V bV. →

V

b
b

d
db

a

Zero inadequate states since no SR conflict or RR conflict is present.

© Copyright :www.madeeasy.in

10 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

9. (c)
Static scoping means that x refers to the x declared innermost scope of declaration. Since ‘h’ is
declared inside the global scope, the innermost x is the one in the global scope (it has no access to
the x’s in ‘f ’ and ‘g’, since it was not declared inside them), so the program prints 23 twice.
Dynamic scoping means that x refers to the x declared in the most recent frame of the call stack.
‘h’ will use the x from either ‘f ’ or ‘g’, whichever one that called it so the program would print 22
and 45.

10. (d)
Analysis phase {lexical analysis, syntax analysis, semantic analysis} is followed by synthesis phase
{intermediate code generation, code optimizer, machine code generation}.

11. (d)
Relation between LL(1), SLR(1) and CLR(1) and LALR(1) given below:

LL(1)

CLR(1)

LALR(1)

SLR(1)

S1 is false, S2 is true and S3 is false.

12. (a)
Given expression: ((3 × 2) – (10 + (5 – ((7 × 6) / 3))))

= (6 – (10 + (5 – (42/3))))
= (6 – (10 + (5 –14)))
= (6 – (10 – 9))
= (6 – (1))
= 5

13. (d)
Given grammar:
A → BaCBD A → AaABDcbcBD
B → Cb ≡ B → Cb
C → Ac C → Ac
D → d D → d
Removing left recursion from A → AabcABDcBD
A → aA′bA′cA′cBDA′
A′ → BDA′∈
B → Cb
C → Ac
D → d

© Copyright : www.madeeasy.in

11• Compiler DesignCompiler DesignCompiler DesignCompiler DesignCompiler DesignCS

14. (b)

C

C S

C S S E

idEE

S E

S

E id

E id id

id

id

= 160

3

13

3

2

×

×

×+

+

S

15. (b)
Control flow graph will be:

t1 = 10 ×
= +
= 8 ×
= – 88

[] = 0.0
 = + 1

If < = 10 goto

i
t t j
t t
t t
a t
i j

j B

2 1

3 2

4 3

4

3

j = 1

i = 1

Entry

B2

B1

B3

i = + 1
If < = 10 goto

i
i B2

B4

i = 1B5

t5 = – 1
= 88 ×

[] = 1.0
 = + 1

If < = 10 goto

i
t t
a t
i i

i B

6 5

6

6

B6

Exit

© Copyright :www.madeeasy.in

12 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

16. (b)
Check for SLR(1):

S′
S .Aa
S .bAc
S .dc
S .bda
A .d

 →
 →
 →
 →
 →

→ .S S S.′ →

S A.a →
A

S d.c
A d.

 →
 →

d

Since here shift-reduce present so check
shift(c) follow(A) = or not i.e. {c} {a, c}
Hence, cannot be SLR(1)

∩ φ ∩ ≠ φ

S

No need to design full DFA, check on each state.
Check for LALR:

S′ →
 →
 →
 →
 →
 →

.S, $
S .Aa, $
S .bAc, $
S .dc, $
S .bda, $
A .d, a

S S., $′ →

S b.Ac, $
S b.da, $
A d, c

 →
 →
 → .

b

S bA.c, $ →
A

S bd.a, $
A d., c

 →
 →

d
S bda., $ →

a

S bAc., $ →
c

S d.c, $ →
A d., a →

d
S dc., $ →

c

S A.a, $ →
A

S Aa., $ →
a

S

Since no state present, which only differs is look ahead symbols, hence grammar has LALR(1)
and LR(1) DFA with same state. So grammar is LR(1), LALR(1) but not SLR(1).

17. (d)
First(S) = {(, a, d} Follow(S) = {), b, $}
First(U) = {(, a, d} Follow(U) = {a, c,), b, $}
First(V) = {a, ∈} Follow(V) = {c,), b, $}
First(W) = {c, ∈} Follow(W) = {), b, $}
LL(1) Table:

M[T, t]

S

U

V

W

a

S UVW→

U aSb

V aV

→

→

b

V

W

→ ∈

→ ∈

c

V

W cW

→ ∈

→

d

S UVW→

U d→

(

S UVW

U (S)

→

→

)

V

W

→ ∈

→ ∈

$

V

W

→ ∈

→ ∈

Six entries are missing.

© Copyright : www.madeeasy.in

13• Compiler DesignCompiler DesignCompiler DesignCompiler DesignCompiler DesignCS

18. (c)
LR(1):

S′ →
 →
 →
 →
 →
 →

.S, $
S .Aa, $
S .bAc, $
S .dc, $
S .bda, $
A .d, a

S S., $′ →

S b.Ac, $
S b.da, $
A d, c

 →
 →
 → .

b

S bA.c, $ →
A

S bd.a, $
A d., c

 →
 →

d
S bda., $ →

a

S bAc., $ →
c

S d.c, $ →
A d., a →

d
S dc., $ →

c

S A.a, $ →
A

S Aa., $ →
a

S

Since their is not state which only differs in look ahead symbol, hence given LR(1) DFA is LALR(1)
DFA. Hence 11 states are needed.

19. (d)

S′ →
 →
 →
 →

.S, $
S .aXab, $, c
S .Y, $, c
Y .Sc, $, c

S a.Xab, $, c
X .bYa, a
X . , a

 →
 →
 → ∈

a
S3

S S., $
Y S.c, $, c

′ →
 →

S1

Y Sc., $, c→
c

S2

S Y., $, c→

S0

S16

Y

X b.Ya.a
Y .Sc, a, c
S .aXab, c
S .Y, c

 →
 →
 →
 →

b
S7

S a.Xab, c
X .bYa, a
X . , a

 →
 →
 → ∈

S aX.ab, c→ S aXa.b, c→

S14 S13
XaS aXab., c→

S15
b

S12
b a

S Y., c
S bY.a, a

 →
 →

Y

S10

S bYa., a→
S12

a

Y S.c, a, c→ S

S8

Y Sc., a, c→
S9

c

S aX.ab, $, c→

S4

X

S aXa.b, $, c→

S5
a S aXab., $, c→

S6
b

S

So total 17 states are needed for LR(1) DFA.

20. (b)

21. (d)
• S → aabc | ab

There is left factoring in LL(1). Hence, not LL(1), but it is LL(2).
• Every regular language is LL(1) is true. There exist a regular grammar which is LL(1).
• Every regular grammar is LL(1) is false, because regular grammar may contain left recursion,

left factoring, ambiguity.

© Copyright :www.madeeasy.in

14 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

22. (c)
Follow (S) = {$, a, b}
Follow (A) = {a, b}

First (B) = {a, b}
First (S) = {a, b, ∈} = First (A) = First (B)

23. (c)
To implement recursion, activation record should be implemented by providing dynamic memory
allocation. This dynamic allocation is done from run-time stack. Heap is essential to allocate
memory for data structures at run-time, not for recursion.
So, statement (a) and (c)are correct.

24. (c)
b = (b + c) d = (b + c) ∗ d
d = b ∗ d b = ((b + c) ∗ d) – (b + c)

Final expression is
⇒ b = ((b + c)∗ d) – (b + c)
So, DAG representation for above expression is:

d

Cb

∗

+

–

Number of nodes = 6
Number of edges = 6

25. (a)
• S1 is correct.
• With triple, optimization cannot change the execution order but with indirect triple we can.

26. (d)

27. (d)
Lexemes are identified by the lexical analyzer as an instance of that token.
Hence only statement (d) is false.

28. (d)
• Statement S1 and S2 are correct.
• Statement S3 is incorrect. Heap and stack both are present in main memory.

© Copyright : www.madeeasy.in

15• Compiler DesignCompiler DesignCompiler DesignCompiler DesignCompiler DesignCS

29. (c)

S

X Y

id
6

id
4

+ YX * Y

id
5

id
7

X * Y

Output : 64 * 5 * 7 –

30. (a)

S

A a b

B a b

{ , , }a b ∈

{ , , }

{ , , }

∈

∈

{ , , $}a b

{ , }

{ , , $}

a b

a b

FIRST FOLLOW

LL(1) Parsing table:

S S aAbB
S

A A S

B B S

∈

→

→
→

→

S bAbB
S

A S

B S

∈
→
→

→

→

S

B S

∈→

→

a b $

