CLASS TEST

India's Best Institute for IES, GATE \& PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

ELECTRONIC DEVICES
 ELECTRONICS ENGINEERING

Date of Test : 10/06/2024

ANSWER KEY

1. (a)
2. (c)
3. (a)
4. (b)
5. (c)
6. (c)
7. (c)
8. (a)
9. (d)
10. (b)
11. (b)
12. (a)
13. (c)
14. (a)
15. (b)
16. (c)
17. (b)
18. (b)
19. (b)
20. (a)
21. (a)
22. (b)
23. (b)
24. (c)
25. (a)
26. (a)
27. (b)
28. (b)
29. (c)
30. (c)

EC

- Electronic Devices

DETAILED EXPLANATIONS

1. (a)

Zener breakdown voltage is less because in higher doping region, depletion layer width is small and a small reverse voltage is able to break the covalent bond and gives sudden increase in current.
Hence, zener breakdown voltage V_{1} corresponds to point A.
2. (c)

We know that,
Collector current,

$$
\begin{aligned}
& I_{C}=\beta I_{B}+(1+\beta) I_{C O} \\
& I_{C}=\beta I_{B}+\beta I_{C O}+I_{C O}
\end{aligned}
$$

$\therefore \quad \beta=\frac{I_{\mathrm{C}}-I_{\mathrm{CO}}}{I_{B}+I_{\mathrm{CO}}}$
but, $\quad \alpha=\frac{\beta}{1+\beta}=\frac{\frac{I_{C}-I_{\mathrm{CO}}}{I_{B}+I_{\mathrm{CO}}}}{1+\frac{I_{\mathrm{C}}-I_{\mathrm{CO}}}{I_{B}+I_{\mathrm{CO}}}}=\frac{I_{\mathrm{C}}-I_{\mathrm{CO}}}{I_{B}+I_{\mathrm{CO}}+I_{\mathrm{C}}-I_{\mathrm{CO}}}$
$\therefore \quad \alpha=\frac{I_{C}-I_{\mathrm{CO}}}{I_{C}+I_{B}}$
3. (b)

Given, \quad Oxide thickness $\left(t_{o x}\right)=50 \mathrm{~nm}$
Capacitance per unit area,

$$
C=\frac{\epsilon_{o x}}{t_{o x}}=\frac{3.45 \times 10^{-11}}{50 \times 10^{-9}} \mathrm{~F} / \mathrm{m}^{2}=6.9 \times 10^{-4} \mathrm{~F} / \mathrm{m}^{2}
$$

\therefore
$C=69 \mathrm{nF} / \mathrm{cm}^{2}$
4. (c)

Given, Collector current, $I_{C}=1 \mathrm{~mA}$
Since, $I_{C}=1 \mathrm{~mA}>0 \Rightarrow$ BJT not in cut-off region.
Emitter current $I_{E}=1.2 \mathrm{~mA}$
But

$$
\begin{aligned}
& I_{E}=I_{B}+I_{C} \\
& I_{B}=I_{E}-I_{C}=0.2 \mathrm{~mA} \\
& \beta=\frac{I_{C}}{I_{B}}=\frac{1 \mathrm{~mA}}{0.2 \mathrm{~mA}}=5<\beta_{\min }
\end{aligned}
$$

\Rightarrow
$\therefore \mathrm{BJT}$ is in saturation region.
5. (a)

The conductors have the positive temperature coefficient of resistance. The conductors have almost linear increase in resistivity.
6. (a)

In a forward biased pn-junction diode, the current flow is due to diffusion of majority carriers and recombination of minority carriers.
7. (c)

$$
\begin{align*}
\frac{D_{n}}{\mu_{n}} & =\frac{D_{p}}{\mu_{p}}=V_{T} \quad \text { (Eienstein's equation) } \\
\Rightarrow \quad \frac{48}{\mu_{n}} & =\frac{12}{\mu_{p}} \\
4 & =\frac{\mu_{n}}{\mu_{p}} \\
\mu_{p}+\mu_{n} & =100 \tag{given}\\
5 \mu_{p} & =100 \\
\mu_{p} & =20 \\
\mu_{n} & =80 \mathrm{~cm}^{2} / \mathrm{V}-\mathrm{sec}
\end{align*}
$$

8. (c)

Given, resistivity,

$$
\rho=1.5 \Omega-\mathrm{cm}
$$

Hall coefficient, $\quad R_{H}=-1250 \mathrm{~cm}^{3} / \mathrm{C}$
Since, R_{H} is negative, the charge carriers are electrons.
Mobility,

$$
\begin{aligned}
\mu_{e} & \approx \sigma\left|R_{H}\right| \\
& =\frac{1}{\rho}\left|R_{H}\right|=\frac{1}{1.5} \times 1250
\end{aligned}
$$

$$
\therefore \quad=833 \mathrm{~cm}^{2} / \mathrm{V} \text {-sec }
$$

9. (a)
(a)

$$
\alpha=\beta^{*} \gamma
$$

$\gamma=$ emitter injection efficiency, $\quad \gamma=\frac{98}{100}=0.98$
$\beta^{*}=$ base transport factor,

$$
\begin{aligned}
\beta^{*} & =\frac{99-1.98}{99}=1-\frac{2}{100}=0.98 \\
\alpha & =\text { common base current gain }=\gamma \beta^{*}=0.98 \times 0.98=0.9604
\end{aligned}
$$

10. (b)

$$
\begin{aligned}
\lambda & \leq \frac{1.24}{E_{g}(\text { in } \mathrm{eV})} \mu \mathrm{m} \\
\lambda_{(\max)} & =\frac{1.24}{2.5} \mu \mathrm{~m}=0.496 \mu \mathrm{~m}=4960 \AA
\end{aligned}
$$

11. (b)

Given, MOSFET is operated in saturation region and channel length modulation is present,
\therefore Drain current, $\quad I_{D}=\mu_{n} C_{o x} \frac{W}{2 L}\left(V_{G S}-V_{T}\right)^{2}\left[1+\lambda V_{D S}\right]$
Drain to source conductance,

$$
\begin{equation*}
g_{d s}=\frac{\partial I_{D}}{\partial V_{D S}}=\mu_{n} C_{o x} \frac{W}{2 L}\left(V_{G S}-V_{T}\right)^{2}(\lambda) \tag{ii}
\end{equation*}
$$

From equation (i), we can write,

$$
\frac{I_{D}}{1+\lambda V_{D S}}=\mu_{n} C_{o x} \frac{W}{2 L}\left(V_{G S}-V_{T}\right)^{2}
$$

We can re-write equation (ii) as,

$$
g_{d s}=\frac{I_{D}}{1+\lambda V_{D S}} \cdot \lambda
$$

or,

$$
g_{d s}=\frac{I_{D}}{\frac{1}{\lambda}+V_{D S}}
$$

12. (b)

The current,

$$
\begin{align*}
& I_{D}=\frac{5 \mathrm{~V}-1.6 \mathrm{~V}}{R} \\
& I_{D}=\frac{3.4 \mathrm{~V}}{R} \tag{i}
\end{align*}
$$

But it is given, to produce $1 \mathrm{mcd}, I_{D(\min)}=4 \mathrm{~mA}$
So,

$$
\begin{aligned}
\frac{3.4 \mathrm{~V}}{R} & \geq 4 \mathrm{~mA} \\
R & \leq \frac{3.4}{4} \mathrm{k} \Omega=850 \Omega \\
R_{(\max)} & =850 \Omega
\end{aligned}
$$

13. (a)

$$
\begin{aligned}
P_{n} & =P_{n 0} e^{0.5 / V_{t}} \\
P_{n 0} & =\frac{n_{i}^{2}}{n_{n 0}}=\frac{10^{20}}{5 \times 10^{15}}=2 \times 10^{4} \mathrm{~cm}^{-3} \\
P_{n} & =2 \times 10^{4} e^{20} \approx 10 \times 10^{12} \mathrm{~cm}^{-3}
\end{aligned}
$$

14. (a)

The Fermi potential,

$$
\begin{aligned}
& \phi_{f p}=\frac{k T}{q} \ln \left[\frac{N_{a}}{n_{i}}\right] \\
& \phi_{f p}=0.026 \ln \left[\frac{10^{16}}{1.5 \times 10^{10}}\right] \\
& \phi_{f p}=0.35 \mathrm{~V}
\end{aligned}
$$

The maximum space charge width

$$
\begin{aligned}
x_{d(\max)} & =\left[\frac{4 \varepsilon_{s i} \phi_{f p}}{e N_{a}}\right]^{1 / 2}=\left[\frac{4 \times 1.04 \times 10^{-12} \times 0.35}{1.6 \times 10^{-19} \times 10^{16}}\right]^{1 / 2} \mathrm{~cm} \\
& =3.02 \times 10^{-5} \mathrm{~cm} \\
x_{d(\max)} & =0.302 \mu \mathrm{~m}
\end{aligned}
$$

15. (c)

Given current equation of a $P N$ junction diode is,

$$
\begin{align*}
& I(T)=I_{s}\left(T_{0}\right) \exp \left[0.057\left(T-T_{0}\right)\right] ; T_{0}=300 \mathrm{~K} \\
& I(T)=I_{s}(300) \exp [0.057(T-300)] \tag{i}
\end{align*}
$$

At $T=300 \mathrm{~K}$,

$$
\begin{array}{ll}
& I(300)=I_{s}(300) \exp [0.057(300-300)] \\
\therefore & I(300)=I_{s}(300) \tag{ii}
\end{array}
$$

It is given that, at a temperature (assume T_{1}) the current is twice its value at $T=300 \mathrm{~K}$.
The new current at T_{1} is

$$
\begin{equation*}
I\left(T_{1}\right)=2 I(300) \tag{iii}
\end{equation*}
$$

But, $\quad I\left(T_{1}\right)=I_{s}(300) \exp \left[0.057\left(T_{1}-300\right)\right]$
Substitute equation (iii) in equation (iv),

$$
2 I(300)=I_{s}(300) \exp \left[0.057\left(T_{1}-300\right)\right]
$$

From equation (ii),

$$
\begin{aligned}
I(300) & =I_{s}(300) \\
2 I_{s}(300) & =I_{s}(300) \exp \left[0.057\left(T_{1}-300\right)\right] \\
2 & =\exp \left[0.057\left(T_{1}-300\right)\right] \\
\ln 2 & =0.057\left(T_{1}-300\right) \\
\therefore \quad T_{1} & =312.16 \mathrm{~K} \\
T_{1} & =313 \mathrm{~K}
\end{aligned}
$$

16. (b)

Given that,
Reverse saturation current density, $J_{s}=3.6 \times 10^{-11} \mathrm{~A} / \mathrm{cm}^{2}$
Photo current density,

$$
J_{L}=15 \mathrm{~mA} / \mathrm{cm}^{2}
$$

The open-circuit voltage of a solar cell is,

$$
\begin{aligned}
& V_{\mathrm{OC}}=V_{t} \ln \left[1+\frac{J_{L}}{J_{s}}\right]=0.026 \ln \left[1+\frac{15 \times 10^{-3}}{3.6 \times 10^{-11}}\right] \\
& V_{\mathrm{OC}}=0.516 \mathrm{~V}
\end{aligned}
$$

17. (b)

Diffusion potential (or) built in potential,

$$
\begin{aligned}
V_{b i} & =\text { Area under the electric field distribution curve } \\
& =\text { Area under given curve (which resembles triangle) } \\
V_{b i} & =\frac{1}{2} \times \text { Base } \times \text { height }=\frac{1}{2} \times\left(W_{P}+W_{N}\right) \times(-E)
\end{aligned}
$$

magnitude of diffusion potential

$$
\begin{aligned}
\left|V_{b i}\right| & =\left|\frac{1}{2} \times\left(W_{P}+W_{N}\right) \times(-E)\right| \\
& =\frac{1}{2} \times 4 \mu \mathrm{~m} \times 15 \times 10^{4} \mathrm{~V} / \mathrm{m} \\
\left|V_{b i}\right| & =0.3 \mathrm{~V}
\end{aligned}
$$

18. (b)

As drain is connected to gate for both MOSFETs, they will be in saturation mode of operation.
i.e.,

$$
\begin{aligned}
I_{D 1} & =I_{D 2} \\
K_{1}\left(V_{G S 1}-V_{T}\right)^{2} & =K_{2}\left(V_{G S 2}-V_{T}\right)^{2}
\end{aligned}
$$

Since, $K \propto W ; K_{2}=2 K_{1}$

$$
K_{1}\left(V_{G S 1}-V_{T}\right)^{2}=2 K_{1}\left(V_{G S 2}-V_{T}\right)^{2}
$$

But $\quad V_{G S 1}=5-V_{0}$

$$
V_{G S 2}=V_{0}
$$

$$
\left(5-V_{0}-1.5\right)^{2}=2\left(V_{0}-1.5\right)^{2}
$$

$$
3.5-V_{0}=\sqrt{2}\left(V_{0}-1.5\right)
$$

$$
3.5-V_{0}=\sqrt{2} V_{0}-2.12
$$

$$
2.414 V_{0}=5.62
$$

$$
V_{0}=2.33 \mathrm{~V}
$$

19. (b)

$$
\begin{array}{rlrl}
C_{T} & \propto \frac{1}{\sqrt{V_{b i}+V_{R B}}} \\
\text { at } & & \\
\text { at } & \frac{C_{T 1}}{C_{T 2}} & =\frac{\sqrt{V_{b i}+V_{R B 2}}}{\sqrt{V_{b i}+V_{R B 1}}} \\
V_{R B 1} & =0 \mathrm{~V}, & C_{T 1}=1 \mu \mathrm{~F} . \\
& V_{R B 2} & =-6 \mathrm{~V}, & C_{T 2}=0.5 \mu \mathrm{~F} \\
& \frac{C_{T 1}}{C_{T 2}} & =\frac{\sqrt{V_{b i}+V_{R B 2}}}{\sqrt{V_{b i}+V_{R B 1}}} & \\
\therefore \quad \frac{1}{0.5} & =\sqrt{\frac{-6+V_{b i}}{V_{b i}}} & \\
& V_{b i} & =-2 \mathrm{~V}
\end{array}
$$

20. (d)

We know that,
Diode voltage V_{D} decreases by 2.5 mV per $1^{\circ} \mathrm{C}$ rise in temperature.
Given, temperature, $T_{1}=20^{\circ} \mathrm{C}$

$$
\begin{array}{rlrl}
\frac{\Delta V_{D}}{\Delta T} & =-2.5 \mathrm{mV} /{ }^{\circ} \mathrm{C} \\
\frac{V_{D 2}-V_{D 1}}{\left(T_{2}-20\right)} & =-2.5 \times 10^{-3} \\
\therefore & \frac{(600-700) \times 10^{-3}}{-2.5 \times 10^{-3}} & =T_{2}-20 \\
\therefore & T_{2} & =60^{\circ} \mathrm{C}
\end{array}
$$

21. (a)

We know that,
Potential function, $\quad \phi_{s}=V_{T} \ln \left(\frac{n_{0}}{n_{i}}\right)$
or, $\quad \phi_{s}=V_{T} \ln \left[\frac{N_{D}}{n_{i}}\right]$
Let potential at $1 \mu \mathrm{~m}$ distance is $\phi_{s 1^{\prime}}$

$$
\begin{align*}
\therefore \quad \phi_{s 1} & =V_{T} \ln \left[\frac{N_{D 2}}{n_{i}}\right] \tag{i}\\
\phi_{s 1} & =V_{T} \ln \left[\frac{10^{16}}{n_{i}}\right]
\end{align*}
$$

Let potential at $2 \mu \mathrm{~m}$ distance is $\phi_{s 2^{\prime}}$

$$
\begin{equation*}
\therefore \quad \phi_{s 2}=V_{T} \ln \left[\frac{N_{D 1}}{n_{i}}\right] \tag{ii}
\end{equation*}
$$

It is given magnitude of potential difference,
i.e.,

$$
\left|\phi_{s 1}-\phi_{s 2}\right|=0.12 \mathrm{~V}
$$

$$
V_{T} \ln \left[\frac{N_{D 2}}{N_{D 1}}\right]=0.12 \mathrm{~V}
$$

$$
\therefore \quad \frac{N_{D 2}}{N_{D 1}}=e^{\frac{0.12}{0.026}}
$$

$$
\Rightarrow \quad N_{D 1}=9.89 \times 10^{13} \mathrm{~cm}^{-3}
$$

22. (b)

Since two MOSFETs are operated in saturation mode,
or, $\quad I_{D N}=\mu_{n} C_{o x} \frac{W_{n}}{2 L}\left(V_{O V}\right)^{2}$
where, overdrive voltage $V_{O V}=V_{G S N}-V_{T N}$
Similarly,

$$
I_{D P}=\mu_{p} C_{o x} \frac{W_{p}}{2 L}\left(V_{G S P}-V_{T P}\right)^{2}
$$

or,

$$
I_{D P}=\mu_{p} C_{o x} \frac{W_{p}}{2 L}\left(V_{O V}\right)^{2}
$$

where, overdrive voltage $V_{O V}=V_{G S P}-V_{T P}$
given, $I_{D N}=I_{D P}$

$$
\mu_{n} C_{o x} \frac{W_{n}}{2 L}\left(V_{O V}\right)^{2}=\mu_{p} C_{o x} \frac{W_{p}}{2 L}\left(V_{O V}\right)^{2}
$$

$$
\therefore \quad \frac{W_{n}}{W_{p}}=\frac{\mu_{p}}{\mu_{n}}=0.4
$$

In the given question, it is asking that,

$$
\frac{W_{p}}{W_{n}}=\frac{1}{0.4}=2.5
$$

23. (c)
24. (c)

Fill factor of solar cell is,

$$
\begin{aligned}
\text { F.F. } & =\frac{\text { Maximum power obtained }}{V_{o c} \times I_{s c}} \\
0.65 & =\frac{65 \times 10^{-3}}{V_{o c} \times I_{s c}} \\
\therefore \quad V_{o c} \times I_{s c} & =\frac{65 \times 10^{-3}}{0.65}=100 \mathrm{~mW}
\end{aligned}
$$

\therefore Option (c) satisfies the result $\left(V_{o c} \times I_{s c}=40 \mathrm{~mA} \times 2.5 \mathrm{~V}=100 \mathrm{~mW}\right)$
25. (c)

Given,

$$
\begin{aligned}
\mu_{n} C_{o x} \frac{W}{L} & =1.5 \times 10^{-3} \mathrm{~A} / \mathrm{V}^{2} \\
V_{T} & =0.65 \mathrm{~V} \\
V_{G S} & =4 \mathrm{~V} \\
V_{D S} & =6 \mathrm{~V}
\end{aligned}
$$

Power dissipation in the MOSFET is,

$$
P=V_{D S} \times I_{D S}
$$

where, $I_{D S}$ is drain to source saturation current.
Since the MOSFET is operating in saturation region,

$$
\begin{aligned}
I_{D S} & =\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T}\right)^{2} \\
& =\frac{1}{2} \times 1.5 \times 10^{-3}(4-0.65)^{2} \\
\text { Power dissipation, } \quad I_{D S} & =8.42 \times 10^{-3} \mathrm{~A} \\
\therefore \quad P & =6 \times 8.42 \times 10^{-3} \\
\therefore \quad P & =50.50 \mathrm{~mW}
\end{aligned}
$$

26. (b)

The steady state increase in conductivity,

$$
\Delta \sigma=q\left(\mu_{n}+\mu_{p}\right)(\delta p)
$$

In steady state, $\delta p=g^{\prime} \tau_{p o}$
where, g^{\prime} is the uniform generation rate.

$$
\therefore \quad \Delta \sigma=q\left(\mu_{n}+\mu_{p}\right)\left(g^{\prime} \tau_{p o}\right)
$$

$$
\begin{aligned}
& 2 & =\left(1.6 \times 10^{-19}\right)(8500+400) g^{\prime} \times 10^{-7} \\
\therefore \quad & g^{\prime} & =1.404 \times 10^{22} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}
\end{aligned}
$$

27. (b)

$$
J_{p}=-q D_{p} \frac{d p}{d x}
$$

for $\quad x \leq w$,

$$
\begin{aligned}
\frac{d p}{d x} & =\frac{p(0)-p_{0}}{0-w}=\frac{-\left(p(0)-p_{0}\right)}{w} \\
J_{p} & =\frac{q D_{p}\left(p(0)-p_{0}\right)}{w}=\text { positive constant }
\end{aligned}
$$

for $x \geq w$,

$$
\begin{aligned}
& \frac{d p}{d x} & =0 \\
\Rightarrow & J_{p} & =0
\end{aligned}
$$

28. (a)

$$
\begin{aligned}
q \phi(x) & =E_{F}-E_{i}(x) \\
q \phi(0) & =E_{F}-E_{i}(0)=k T \ln \left(\frac{N_{D}(0)}{n_{i}}\right) \\
\phi(0) & =\frac{k T}{q} \ln \left(\frac{N_{D}(0)}{n_{i}}\right) \\
\phi(x=5 \mu \mathrm{~m}) & =\frac{k T}{q} \ln \left(\frac{N_{D}(5 \mu \mathrm{~m})}{n_{i}}\right) \\
V_{0} & =\phi(0)-\phi(x=5 \mu \mathrm{~m})=\frac{k T}{q} \ln \left(\frac{N_{D}(0)}{N_{D}(5 \mu \mathrm{~m})}\right) \\
& =0.026 \ln \left(\frac{10^{20}}{10^{15}}\right) \mathrm{V} \simeq 0.3 \mathrm{~V}
\end{aligned}
$$

29. (a)

$$
\begin{aligned}
\phi_{s} & =\text { surface potential } \\
& =\frac{1}{2} E_{s} W_{\mathrm{dep}} \\
E_{s} & =\frac{2 \phi_{s}}{W_{\mathrm{dep}}}=\frac{2 \times 0.035}{0.4} \mathrm{~V} / \mu \mathrm{m} \\
E_{s} & =0.175 \mathrm{~V} / \mu \mathrm{m}
\end{aligned}
$$

Boundary condition of electrostatic field should be satisfied at the interface,

So,

$$
\begin{aligned}
\varepsilon_{o x} E_{o x} & =\varepsilon_{s i} E_{s} \\
E_{o x} & =\frac{\varepsilon_{s i} E_{s}}{\varepsilon_{o x}}=3 E_{s} \\
E_{o x} & =0.525 \mathrm{~V} / \mu \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
E_{o x} & =\frac{V_{o x}}{t_{o x}} \\
V_{o x} & =E_{o x} t_{o x}=0.525 \times 1.8 \mathrm{~V}=0.945 \mathrm{~V} \\
V_{G}=V_{o x}+\phi_{s} & =0.98 \mathrm{~V}
\end{aligned}
$$

30. (c)

Force due to magnetic field, $\quad \vec{F}_{m}=q \vec{v}_{d} \times \vec{B}=q \mu_{p} \vec{E}_{\text {applied }} \times \vec{B}=\frac{q \mu_{p} V_{x}}{L} \hat{x} \times(-10 \hat{z})$

$$
=\frac{100 q \mu_{p}}{L} \hat{y}
$$

$$
\vec{F}_{e i}=\text { force due to induced Hall electric field }=-\vec{F}_{m}
$$

$$
=\frac{100 q \mu_{p}}{L}(-\hat{y})=q \vec{E}_{\mathrm{ind}}
$$

$$
\vec{E}_{\text {ind }}=\frac{100 \mu_{p}}{L}(-\hat{y})
$$

As $\vec{E}_{\text {ind }}$ in $(-\hat{y})$ direction, V_{H} is +ve

$$
V_{\mathrm{H}}=W\left|\vec{E}_{\text {ind }}\right|=\frac{W(100) \mu_{p}}{L}=\frac{W(100)\left(500 \times 10^{-4}\right)}{2 W}=2.5 \mathrm{~V}
$$

