Power system-2

ELECTRICAL ENGINEERING

Date of Test: 24/06/2024

ANSWER KEY

 $>$1. (a)
2. (b)
3. (c)
4. (b)
5. (a)
6. (b)
7. (a)
8. (a)
9. (c)
10. (c)
11. (a)
12. (a)
13. (c)
14. (c)
15. (b)
16. (b)
17. (c)
18. (d)
19. (d)
20. (b)
21. (c)
22. (b)
23. (b)
24. (c)
25. (d)
26. (a)
27. (d)
28. (b)
29. (c)
30. (c)

DETAILED EXPLANATIONS

1. (a)

Fault current at bus 3 is,

$$
\begin{aligned}
I_{f 3} & =\frac{V_{3}(0)}{Z_{33}+Z_{f}}=\frac{1}{j 0.2780+j 0.15} \\
I_{f 3} & =-j 2.336 \text { p.u. } \\
\left|I_{f 3}\right| & =2.336 \text { p.u. }
\end{aligned}
$$

2. (b)

When arc resistance is comparable to the impedance of line, then we always prefer the reactance relay to the short transmission line against the ground fault so that the resistance won't impact the relay.
3. (a)

$$
P_{i K}=\frac{V_{i} V_{K}}{X} \sin \delta \quad \text { for lossless line }
$$

P flows from higher voltage angle to lower voltage angle

$$
Q_{i K}=\frac{V_{i}^{2}}{X}-\frac{V_{i} V_{K}}{X} \cos \delta
$$

$\Rightarrow Q$ flows from higher voltage magnitude to lower voltage magnitude.
4. (b)

$$
\begin{aligned}
P_{g} & =\frac{E_{g} E_{m}}{X_{d g}+X_{T}+X_{d m}} \sin \left(\delta_{g}-\delta_{m}\right) \\
0.5 & =\frac{2 \times 1.3}{1.1+1.2+0.5} \sin \left(\delta_{g}-\delta_{m}\right) \\
\left(\delta_{g}-\delta_{m}\right) & =\sin ^{-1}\left(\frac{1.4}{2.6}\right)=32.57^{\circ}
\end{aligned}
$$

5. (c)

We know,

$$
Z_{\text {pu }}=\frac{Z_{\text {act }}}{Z_{\text {base }}}
$$

also,

$$
\begin{equation*}
\therefore \quad Z_{\mathrm{pu}}=Z_{\mathrm{act}} \times \frac{\mathrm{MVA}_{\text {base }}}{\mathrm{kV}_{\text {base }}^{2}}=x \tag{1}
\end{equation*}
$$

After capacity is tripled and voltage is halved,

$$
\begin{equation*}
Z_{\text {pu }}^{\prime}=\left(Z_{\text {act }}\right) \times \frac{3 \mathrm{MVA}_{\text {base }}}{\left(\frac{k V_{\text {base }}}{2}\right)^{2}}=Z_{\text {act }} \times \frac{12 \mathrm{MVA}_{\text {base }}}{k V_{\text {base }}^{2}} \tag{2}
\end{equation*}
$$

Dividing equation (1) and (2),

$$
\frac{x}{Z_{\mathrm{pu}}^{\prime}}=\frac{1}{12} \text { or } Z_{\mathrm{pu}}^{\prime}=12 x
$$

6. (a)

We know for coherently swinging generators,

$$
\left.\begin{array}{rl}
G_{e q} \cdot H_{e q} & =G_{1} H_{1}+G_{2} H_{2} \\
& =300 \times 1.8+450 \times 1 \\
\text { Also given, } \quad & G_{e q}
\end{array}\right) \text { common MVA }=200 \mathrm{MVA}
$$

7. (b)

For the fully transposed transmission line,
Positive sequence impedance $Z_{1}=Z_{s}-Z_{m}$
Negative sequence impedance $Z_{2}=Z_{s}-Z_{m}$
Zero sequence impedance, $Z_{s}=Z_{s}+2 Z_{m}+3 Z_{n}$
Where, $\quad Z_{s}=$ Self impedance $/ \mathrm{ph}$
$Z_{m}=$ Mutual impedance/ph
If the system voltages are unbalanced, we have a neutral current, I_{n} flowing through the neutral (ground) having impedance Z_{n}.
From above equations, we can say

1. Positive and negative sequence impedance are equal.
2. Zero sequence impedance is much larger than the positive or negative sequence impedance.
\therefore Statement (I) is true and statement (II) is false.
3. (a)

Penalty factor for bus-1 $=1.5$
Penalty factor for bus-2 = 1
For optimum cost of power generation

$$
\begin{aligned}
\frac{d C_{1}}{d P_{1}} L_{1} & =\frac{d C_{2}}{d P_{2}} L_{2} \\
300 \times 1.5 & =\frac{d C_{2}}{d P_{2}} \\
\frac{d C_{2}}{d P_{2}} & =450 \mathrm{Rs} / \mathrm{MWhr}
\end{aligned}
$$

9. (a)

Total Kinetic energy of the two machines,

$$
\begin{aligned}
& =G_{1} H_{1}+G_{2} H_{2} \\
& =400 \times 4+1600 \times 2 \\
& =4800 \mathrm{MJ}
\end{aligned}
$$

The equivalent H on the base of 200 MVA,

$$
=\frac{4800 \mathrm{MJ}}{200 \mathrm{MVA}}=24 \mathrm{MJ} / \mathrm{MVA}
$$

10. (c)

Minimum number of equations $=2 n-m-2$

$$
\begin{aligned}
& =2(112)-20-2 \\
& =202
\end{aligned}
$$

11. (b)

Kinetic energy \propto frequency ${ }^{2}$

$$
\begin{aligned}
W & \propto f^{2} \\
\frac{W_{1}}{W_{2}} & =\frac{f_{1}^{2}}{f_{2}^{2}} \\
f_{2} & =f_{1} \sqrt{\frac{W_{2}}{W_{1}}}=50 \times \sqrt{\frac{500-(0.5 \times 50)}{500}} \quad[\because W=G H=100 \times 5 \mathrm{MJ}] \\
& =48.734 \mathrm{~Hz}
\end{aligned}
$$

Percentage deviation in frequency,

$$
=\frac{50-48.734}{50} \times 100=2.532 \%
$$

Thus we can say that I_{1} and I_{3} currents are going into bus thus they are $P Q$ bus and I_{2} is going away from bus
\therefore Bus-2 is generator bus ($P V$ bus).
12. (d)

Zero sequence current in R line is

$$
\begin{aligned}
\vec{I}_{R_{0}} & =\frac{1}{3} \times \text { Current in neutral wire } \\
& =\frac{1}{3} \times 300 \angle 300^{\circ}=100 \angle 300^{\circ} \mathrm{A} \\
\text { Current in } Y \text {-line } & =\vec{I}_{Y}=\vec{I}_{R_{0}}+a^{2} \vec{I}_{R_{1}}+a \vec{I}_{R_{2}} \\
& =\left(100 \angle 300^{\circ}\right)+\left(1 \angle 120^{\circ}\right)^{2}\left(200 \angle 0^{\circ}\right)+\left(1 \angle 120^{\circ}\right)\left(100 \angle 60^{\circ}\right) \\
& =\left(100 \angle 300^{\circ}\right)+\left(200 \angle-120^{\circ}\right)+\left(100 \angle 180^{\circ}\right) \\
\vec{I}_{Y} & =\left(300 \angle-120^{\circ}\right) \mathrm{A}
\end{aligned}
$$

13. (c)

New frequency of operation of 200 MW alternator,

$$
f_{1}=50-\frac{2}{200} P_{1}
$$

and,

$$
\begin{align*}
f_{2} & =50-\frac{3}{200} P_{2} \\
\text { Total load, } P_{1}+P_{2} & =300 \mathrm{MW} \tag{i}
\end{align*}
$$

Units operated in parallel so,

$$
\begin{align*}
f_{1} & =f_{2}=f \\
50-\frac{2}{200} P_{1} & =50-\frac{3}{200} P_{2} \\
2 P_{1}-3 P_{2} & =0 \tag{ii}
\end{align*}
$$

From equations (i) and (ii), we get

$$
\begin{aligned}
& P_{1}=180 \mathrm{MW} \\
& P_{2}=120 \mathrm{MW}
\end{aligned}
$$

Machine (1) which has better speed regulation will be loaded first to its full load rating, so it will operate on maximum load of 200 MW .

$$
\begin{align*}
2 P_{1}-3 P_{2} & =0 \tag{iii}\\
2 \times 200-3 P_{2} & =0 \\
P_{2} & =\frac{400}{3}=133.33 \mathrm{MW}
\end{align*}
$$

Total power delivered by two machine without overloading

$$
\therefore \quad P_{1}+P_{2}=200+133.33=333.33 \mathrm{MW}
$$

14. (a)

$$
\text { Let, } \begin{aligned}
\text { Base MVA } & =20 \mathrm{MVA} \\
\text { Base KV } & =12 \mathrm{kV}
\end{aligned}
$$

Per unit impedance of generator G_{1} on 20 MVA base,

$$
X_{G 1}^{\prime}=X_{G 1} \times \frac{(\mathrm{MVA})_{\text {new }}}{(\mathrm{MVA})_{\text {old }}}=0.30 \times \frac{20}{15}=0.40 \text { p.u. }
$$

Per unit fault current at point F

$$
\begin{aligned}
I_{f} & =I_{f G 1}+I_{f G 2} \\
& =\frac{1}{0.4}+\frac{1}{0.5}=4.50 \text { p.u. } \\
I_{f(\text { actual })} & =4.5 \times \frac{20000}{12 \sqrt{3}}=4330 \mathrm{~A}
\end{aligned}
$$

15. (c)

For given power system four alternators are connected in parallel,

Thevenin's impedance, $\quad Z_{\text {th }}=\frac{0.16}{4}=0.04 \mathrm{pu}$
Also, fault current in pu, $\quad I_{f}=\frac{1}{Z_{\text {th }}}=\frac{1}{0.04}=25 \mathrm{pu}$
per unit short-circuit of system,

$$
\begin{aligned}
\mathrm{MVA}_{\mathrm{sc}} & =25 \mathrm{pu} \\
\therefore \quad \text { short-circuit MVA, } \mathrm{MVA}_{\mathrm{sc}} & =25 \times \text { base MVA } \\
& =25 \times 5=125 \mathrm{MVA}
\end{aligned}
$$

16. (d)

During fault, the current value increases the voltage drops, power factor decreases reactive power drawn increases generally due to reactance of line.
\therefore fault current is high having 90° lagging nature in a transmission line for phasor diagram.
The phasor of \vec{I}_{2} is having largest magnitude and lags voltage V_{1} by almost 90°.
So quantities \vec{V}_{1} and \vec{I}_{2} resembles faulty condition.
\therefore location B is most feasible fault position according to phasor diagram.
17. (b)

We know for transposed transmission line,

$$
\begin{aligned}
& X_{2}=X_{s}-X_{m}=X_{1} \\
& X_{0}=X_{s}+2 X_{m} \\
& X_{s}=0.8 \Omega / \mathrm{km} \text { and } X_{m}=0.2 \\
& X_{1}=+ \text { ve sequence reactance } \\
& X_{2}=\text {-ve sequence reactance } \\
& X_{0}=\text { zero sequence reactance }
\end{aligned}
$$

$$
\text { Given, } \quad X_{s}=0.8 \Omega / \mathrm{km} \text { and } X_{m}=0.2 \Omega / \mathrm{km}
$$

$$
\text { where, } \quad X_{1}=+ \text { ve sequence reactance }
$$

\therefore Negative sequence reactance,

$$
X_{2}=0.8-0.2=0.6 \Omega / \mathrm{km}
$$

Zero sequence reactance,

$$
X_{0}=0.8+2(0.2)=1.2 \Omega / \mathrm{km}
$$

18. (b)

Line-to line fault occurs on b and c phases of generator,

$$
\begin{aligned}
& I_{f}=I_{b}=-I_{c} \\
& I_{a}=0
\end{aligned}
$$

The sequence network for line to line fault is

$$
\begin{aligned}
I_{1} & =\frac{V_{f}}{z_{1}+z_{2}} \\
\Rightarrow \quad I_{f}=I_{b} & =\left(\alpha^{2}-\alpha\right) I_{1}=-j \sqrt{3} I_{1}=\frac{-j \sqrt{3} V_{f}}{z_{1}+z_{2}} \\
\text { and } & I_{f \text { p.u. }} \\
& =\frac{-j \sqrt{3} \times 1}{j 0.2+j 0.2} \\
\left|I_{f \text { p.u. }}\right| & =\frac{\sqrt{3}}{0.4}=4.33 \text { p.u. }
\end{aligned}
$$

$$
\begin{aligned}
I_{f \text { p.u. }} & =\frac{-j \sqrt{3} \times 1}{j 0.2+j 0.2} \\
\left|I_{f \text { p.u. }}\right| & =\frac{\sqrt{3}}{0.4}=4.33 \text { p.u. } \\
\text { Base current } & =\frac{25 \times 10^{3}}{\sqrt{3} \times 11}=1312.16 \mathrm{~A} \\
\text { Fault current, } I_{f} & =4.33 \times 1312.16=5.68 \mathrm{kA}
\end{aligned}
$$

19. (b)
Y-bus matrix for the π equivalent circuit.

$$
Y_{\text {bus }}=\left[\begin{array}{cc}
\frac{1}{Z_{s e}}+\frac{Y_{\text {sh }}}{2} & -\frac{1}{Z_{s e}} \\
-\frac{1}{Z_{s e}} & \frac{1}{Z_{s e}}+\frac{Y_{\text {sh }}}{2}
\end{array}\right]
$$

Here,

$$
Z_{\mathrm{se}}=j X ; Y_{\mathrm{sh}}=0
$$

The above circuit diagram becomes,

$$
\begin{aligned}
& p^{\prime}{ }_{\circ}^{-}-\bar{\circ} q^{\prime} \\
& \therefore \quad Y_{\text {bus }}=\left[\begin{array}{cc}
\frac{1}{j X} & \frac{-1}{j X} \\
\frac{-1}{j X} & \frac{1}{j X}
\end{array}\right]
\end{aligned}
$$

20. (c)

For given system, fault impedance Z_{f} is given.
\therefore L-L fault current will flow through Z_{f}.
\therefore Including Z_{f} in our impedance we can draw,

Fault current,

$$
I_{f 1}=\sqrt{3} I_{a 1}=\sqrt{3} \cdot \frac{V_{\mathrm{th}}}{Z_{1}+Z_{2}+Z_{f}}
$$

Also, zero sequence impedance diagram,

Also we know, fault current,

$$
I_{f}=\sqrt{3} I_{a 1}^{\prime}=\sqrt{3} \cdot \frac{V_{\mathrm{th}}}{Z_{1}+Z_{2}}
$$

Also given,

$$
I_{f 1}=0.2 I_{f}
$$

Substituting value, we get

$$
\begin{aligned}
\frac{\sqrt{3} V_{\mathrm{th}}}{Z_{1}+Z_{2}+Z_{f}} & =0.2 \cdot \frac{\sqrt{3} V_{\mathrm{th}}}{Z_{1}+Z_{2}} \\
Z_{1}+Z_{2} & =0.2\left(Z_{1}+Z_{2}+Z_{f}\right) \\
\frac{0.8\left(Z_{1}+Z_{2}\right)}{0.2} & =Z_{f} \\
Z_{f} & =\frac{0.8(0.4+0.3)}{0.2}=4(0.4+0.3)=2.8 \mathrm{pu}
\end{aligned}
$$

21. (c)

For 3- ϕ transmission line we can use relation,

$$
\begin{align*}
& X_{1}=X_{s}-X_{m} \tag{1}\\
& X_{0}=X_{s}+2 X_{m} \tag{2}\\
& X_{0}=32 \Omega \text { and } X_{1}=16 \Omega
\end{align*}
$$

Also given,
\therefore Solving (1) and (2) simultaneously,

$$
\begin{aligned}
X_{s}-X_{m}= & 16 \\
X_{s}+2 X_{m}= & 32 \\
(-)(-) & (-) \\
-3 X_{m}= & -16 \\
X_{m}= & \frac{16}{3} \simeq 5.33 \Omega
\end{aligned}
$$

22. (d)

Positive sequence reactance

$$
X_{1}=X_{d}=0.1 \text { p.u. }
$$

Negative sequence reactance

$$
X_{2}=\frac{X_{d}+X_{q}}{2}=\frac{0.1+0.05}{2}=\frac{0.15}{2}=0.075 \text { p.u. }
$$

23. (c)

Stored Kinetic energy in rotor (K.E.)

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{~J} \omega_{s m}^{2} \\
\text { K.E. } & =\frac{1}{2} \times 10000 \times\left(\frac{4 \pi f}{P}\right)^{2}=\frac{1}{2} \times 10000 \times 4 \pi^{2} \times(50)^{2}=493.48 \mathrm{MJ}
\end{aligned}
$$

As we know,

$$
H=\frac{K . E .}{\mathrm{MVA}}=\frac{493.48 \times 0.9}{90}=4.93 \mathrm{MJ} / \mathrm{MVA}
$$

24. (c)

$$
\begin{array}{rlrl}
\text { CT ratio } & =1: K \\
I_{\text {sec }}(\mathrm{CT}) & =K \cdot\left(\frac{x \cdot V_{\mathrm{ph}}}{R_{n}}\right) \quad[\because x=\text { unprotected region of winding }] \\
I_{\text {sec }}(\mathrm{CT}) & \geq I_{\text {pick-up (relay) }} & \\
\frac{5}{1000} \times x \times \frac{11000}{\sqrt{3} \times 5} & =0.75 \\
x & =0.1180 \text { or } 11.80 \% &
\end{array}
$$

If

Percentage protected region $=100-x \%=(100-11.80) \%$

$$
=88.20 \%
$$

25. (a)

$$
\begin{aligned}
E_{g}^{\prime} & =V_{t}+j I_{L} X_{d}^{\prime} \\
E_{g}^{\prime} & =(1+j 0)+j(0.8-j 0.6) \times 0.35 \\
& =1+0.21+j 0.28 \\
& =1.2419 \angle 13.029
\end{aligned}
$$

26. (c)

As we know, $\quad\left(I_{c i}\right)\left(L_{i}\right)=\lambda$

$$
\begin{aligned}
L_{i} & =\text { Penalty factor of } i^{\text {th }} \text { unit } \\
& =\frac{1}{1-\frac{\partial P_{L}}{\partial P_{i}}}=\frac{1}{1-0.1}=\frac{1}{0.9}=\frac{10}{9}
\end{aligned}
$$

So, $\quad\left[1.8+0.04 P_{i}\right] \times \frac{10}{9}=34$
Output of generator is, $P i=\frac{\frac{9 \times 34}{10}-1.8}{0.04}=720 \mathrm{MW}$
27. (b)

$$
V_{R 1}=2 \mathrm{kV}
$$

$$
\begin{align*}
V_{R Y} & =V_{R}-V_{Y} \\
& =\left(V_{R 0}+V_{R 1}+V_{R 2}\right)-\left(V_{R 0}+K^{2} V_{R 1}+K V_{R 2}\right) \\
& =2 V_{R 1}-\left(-V_{R 1}\right) \\
& =3 V_{R 1} \\
& =3 \times 2 \mathrm{kV}=6 \mathrm{kV}
\end{align*}
$$

28. (b)
Row
Sum of elements
Impedance
29.

$$
-j 40+j 10+j 50=j 20
$$

$$
\frac{1}{j 20}=-j 0.05
$$

\therefore Capacitance
2. $-j 30-j 20+j 10=j 20$
$\frac{1}{j 20}=-j 0.05$
\therefore Capacitance
3.

$$
j 10+j 10-j 30=-j 10
$$

$$
\frac{1}{-j 10}=j 0.1
$$

$$
\therefore \text { Inductance }
$$

\therefore There are 2 shunt capacitances and 1 shunt inductance are in a system.
29. (d)

$$
\begin{aligned}
I_{a 0} & =\frac{1}{3}\left(I_{a}+I_{b}+I_{c}\right)=\frac{1}{3} I_{n} \\
I_{n} & =3 I_{a 0}=3(0)=0 \mathrm{~A}
\end{aligned}
$$

30. (c)

$$
\text { Now, } \begin{aligned}
I_{a} & =0 \\
I_{b} & =\frac{100 \times 10^{3}}{3.3 \times 10^{3}}=30.3 \mathrm{~A} \\
I_{c} & =-I_{b}=-30.3 \mathrm{~A} \\
\therefore \quad\left|I_{b}\right| & =\left|I_{c}\right|=30.3 \mathrm{~A} \\
I_{b}+I_{c} & =0 \mathrm{~A}
\end{aligned}
$$

Zero sequence component,

$$
\begin{aligned}
I_{a 0} & =\frac{1}{3}\left(I_{a}+I_{b}+I_{c}\right) \\
& =\frac{1}{3}\left(0+I_{b}-I_{b}\right)=0 \mathrm{~A}
\end{aligned}
$$

