SOLID MECHANICS

CIVIL ENGINEERING

Date of Test : 17/06/2024

ANSWER KEY

1. (a)
2. (d)
3. (a)
4. (c)
5. (a)
6. (c)
7. (c)
8. (a)
9. (a)
10. (d)
11. (d)
12. (a)
13. (b)
14. (a)
15. (b)
16. (a)
17. (b)
18. (c)
19. (a)
20. (a)
21. (c)
22. (c)
23. (c)
24. (a)
25. (a)
26. (a)
27. (c)
28. (a)
29. (c)
30. (a)

DETAILED EXPLANATIONS

1. (a)

The length of column is very large as compared to its cross-sectional dimensions.
2. (c)

As per Rankine theory:

$$
\left.\begin{array}{rl}
\frac{1}{P_{R}} & =\frac{1}{P_{C S}}+\frac{1}{P_{E}} \\
P_{R} & =\frac{P_{C S} \times P_{C}}{P_{C S}+P_{E}}=\frac{P_{C S}}{1+\frac{P_{C S}}{P_{E}}} \\
P_{S C} & =\sigma_{\mathrm{CS}} A \\
P_{E} & =\frac{\pi^{2} E I}{L e^{2}} \\
P_{R} & =\frac{P_{C S}}{1+\frac{\sigma_{C S} A}{\pi^{2} E I}}=\frac{P_{C S}}{1+\frac{\sigma_{C S} A L e^{2}}{\pi^{2} E I}} \\
\therefore \\
\therefore & k
\end{array}\right)=\sqrt{\frac{I}{A}} k^{2}=\frac{I}{A} \quad P_{R}=\frac{P_{C S}}{1+\frac{\sigma_{C S}}{\pi^{2} E}\left(\frac{L e}{k}\right)^{2}}
$$

i.e., option (c) is correct.
3. (d)

We know stress in rod, when load is applied suddenly,

$$
\sigma=\frac{2 P}{A}=\frac{2 \times 20 \times 10^{3}}{1000}=40 \mathrm{~N} / \mathrm{mm}^{2}
$$

Volume of $\operatorname{rod}=l . A .=2.5 \times 10^{3} \times 10^{3}$

$$
=2.5 \times 10^{6} \mathrm{~mm}^{3}
$$

Strain energy which can be absorbed by the rod,

$$
\begin{aligned}
U & =\frac{\sigma^{2}}{2 E} V=\frac{40^{2} \times 2.5 \times 10^{6}}{2 \times 200 \times 10^{3}} \\
& =10 \times 10^{3} \mathrm{~N}-\mathrm{mm} \\
& =10 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

4. (a)

$$
y_{\max }=\frac{W a\left(l^{2}-a^{2}\right)^{3 / 2}}{9 \sqrt{3} E I l}
$$

This value of maximum deflection occurs at x from A

$$
x=\sqrt{\frac{l^{2}-a^{2}}{3}}
$$

5. (c)

$$
\begin{aligned}
& \text { and } \\
& \Rightarrow \quad R_{A}+R_{B}=0 \\
& \Sigma M_{A}=0 \\
& \Rightarrow \quad R_{B} \times 5=15 \\
& R_{B}=3 \mathrm{kN} \\
& R_{A}=-3 \mathrm{kN}
\end{aligned}
$$

Now the for SFD will be as shon below.

6. (a)

$$
\begin{aligned}
\Delta & =\frac{w l^{2}}{2 E} \\
& =\frac{\left(89.2 \times 10^{-6}\right) \times\left(15 \times 10^{3}\right)^{2}}{2 \times\left(90 \times 10^{3}\right)}=0.11 \mathrm{~mm}
\end{aligned}
$$

7. (d)

- Vertical drop at B shows point load on the loaded beam having magnitude equal to $(14+4)=18 \mathrm{kN}$.
- 1° shear force diagram between B and D represents. Uniformly distributed load. Whose magnitude is

8. (c)

$$
\text { Poisson's ratio, } \begin{aligned}
\mu & =\frac{3 K-2 G}{6 K+2 G} \\
& =\frac{3 \times 6.93 \times 10^{4}-2 \times 2.65 \times 10^{4}}{6 \times 6.93 \times 10^{4}+2 \times 2.65 \times 10^{4}}=0.33
\end{aligned}
$$

9. (a)

$$
\begin{aligned}
& \text { Moment at } E=0 \text {, } \\
& \Rightarrow \quad H_{A} \times 2=\frac{4 \times 3^{2}}{2}+2 \times 3 \text {, } \\
& \Rightarrow \quad H_{A}=12 \mathrm{kN}=H_{E} \\
& \tan \theta=\frac{V_{E}}{H_{E}}=\frac{1.5}{2}=\frac{3}{4} ; \\
& \therefore \quad V_{E}=\frac{3}{4} H_{E}=9 \mathrm{kN} \text {, } \\
& \therefore \quad V_{A}=(4 \times 3)+2-9=5 \mathrm{kN} \\
& \therefore \quad \text { Maximum S.F. }=6 \mathrm{kN}
\end{aligned}
$$

10. (b)

If a force acts on a body, then resistance to the deformation is known as stress.
11. (c)

Let

$$
P_{s}=\text { Load shared by steel rod }
$$

and

$$
P_{c}=\text { Load shared by copper rod }
$$

Now elongation of steel rod due to load P_{s}

$$
\delta l_{s}=\frac{P_{s} l_{s}}{A_{s} E_{s}}=\frac{P_{s} \times 1 \times 10^{3}}{200 \times 200 \times 10^{3}}=0.025 \times 10^{-3} P_{s}
$$

and elongation of copper rod due to load P_{C}

$$
\delta l_{c}=\frac{P_{c} l_{c}}{A_{c} E_{c}}=\frac{P_{C} \times 2 \times 10^{3}}{400 \times 100 \times 10^{3}}=0.05 \times 10^{-3} P_{c}
$$

From the geometry of elongation of the steel rod and copper rod

$$
\begin{array}{rlrl}
& & \frac{\delta l_{c}}{3} & =\delta l_{s} \\
\Rightarrow & \delta l_{c} & =3 \delta l_{s} \\
\Rightarrow & 0.05 \times 10^{-3} P_{c} & =3 \times 0.025 \times 10^{-3} P_{s} \\
\Rightarrow & P_{c} & =1.5 P_{s} \\
& \frac{P_{c}}{P_{s}} & =1.5
\end{array}
$$

12. (c)

$$
\text { Length }(l)=16 \mathrm{~m}, A=4 \mathrm{~mm}^{2}
$$

Weight of wire ABC, $W=20 \mathrm{~N}$

$$
E=200 \mathrm{GPa}
$$

Deflection at B consists of deflection of wire $A B$ due to self weight plus deflection due to weight of wire $B C$.
Now deflection of wire at B due to self weight of wire $A B$.

$$
\delta l_{1}=\frac{\frac{W}{2} \cdot \frac{l}{2}}{2 A E}=\frac{10 \times 8 \times 10^{3}}{2 \times 4 \times 200 \times 10^{3}}=0.05 \mathrm{~mm}
$$

and deflection of wire at B due to weight of wire $B C$

$$
\delta l_{2}=\frac{\frac{W}{2} \cdot \frac{l}{2}}{A E}=\frac{10 \times 8 \times 10^{3}}{4 \times 200 \times 10^{3}}=0.1 \mathrm{~mm}
$$

Total deflection of wire at $B=\delta l_{1}+\delta l_{2}=0.05+0.1=0.15 \mathrm{~mm}$
13. (a)

Strain energy stored in hollow shaft, $U=\frac{\tau_{\text {max }}^{2}}{4 G}\left[\frac{D^{2}+d^{2}}{D^{2}}\right] V$

$$
\begin{aligned}
& =\frac{80^{2}}{4 \times 100 \times 10^{3}}\left[\frac{80^{2}+60^{2}}{80^{2}}\right] \times 10^{6} \\
& =\frac{10000 \times 10^{6}}{4 \times 10^{5}}=2.5 \times 10^{4} \mathrm{~N}-\mathrm{mm} \\
& =25 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

14. (a)

Direct longitudinal stress,

$$
\sigma_{x}=\frac{90 \times 10^{3}}{30 \times 30}=100 \mathrm{MPa}
$$

$$
\begin{align*}
& \epsilon_{x}=\frac{1}{E}\left[-\sigma_{x}+v\left(\sigma_{y}+\sigma_{z}\right)\right] \tag{i}\\
& \epsilon_{y}=\epsilon_{z}=\frac{1}{E}\left[-\sigma_{y}+v\left(\sigma_{x}+\sigma_{z}\right)\right]=0 \tag{ii}
\end{align*}
$$

As we know

$$
\sigma_{y}=\sigma_{z}
$$

Also on solving equation (ii)

$$
\begin{aligned}
\sigma_{y} & =\frac{v}{1-v} \sigma_{x}=\frac{0.25}{1-0.25} \sigma_{x}=\frac{\sigma_{x}}{3} \\
\epsilon_{x} & =\frac{1}{E}\left[-\sigma_{x}+v\left(\sigma_{y}+\sigma_{z}\right)\right] \\
& =\frac{1}{E}\left[-\sigma_{x}+v \times 2 \sigma_{y}\right] \\
& =\frac{1}{E}\left[-\sigma_{x}+0.25 \times 2 \times \frac{\sigma_{x}}{3}\right] \\
& =\frac{1}{E}\left[-\sigma_{x}+\frac{0.5 \sigma_{x}}{3}\right] \\
& =\frac{1}{100 \times 10^{3}}\left[-100+\frac{0.5 \times 100}{3}\right] \\
& =\frac{1}{100 \times 10^{3}}\left[-\frac{250}{3}\right] \\
\delta l & =l \epsilon_{x}=\frac{1}{100 \times 10^{3}}\left[-\frac{250}{3}\right] \times 100 \\
& =0.083 \mathrm{~mm}
\end{aligned}
$$

(Reduction in length)
15. (b)

We know deflection of spring,

$$
\delta=\frac{64 W R^{3} n}{G d^{4}}
$$

where, $W=100 \mathrm{~N}, R=25 \mathrm{~mm}, n=12, G=80 \mathrm{GPa}, d=5 \mathrm{~mm}$
So, $\quad \delta=\frac{64 \times 100 \times(25)^{3} \times 12}{80 \times 10^{3} \times 5^{4}}=24 \mathrm{~mm}$
16. (c)

We know that area of triangular beam section

$$
\begin{aligned}
A & =\frac{\sqrt{3}}{4} a^{2} \text { for equilateral triangle } \\
& =\frac{\sqrt{3}}{4}(100)^{2}=2500 \sqrt{3} \mathrm{~mm}^{2}
\end{aligned}
$$

Average shear stress across the section

$$
\tau_{\mathrm{avg}}=\frac{F}{A}=\frac{13 \times 10^{3}}{2500 \sqrt{3}}=3 \mathrm{MPa}
$$

So maximum shear stress for triangular section

$$
\begin{aligned}
\tau_{\max } & =1.5 \tau_{\text {avg }} \\
& =1.5 \times 3=4.5 \mathrm{MPa}
\end{aligned}
$$

17. (c)

From bending equation, $\frac{f}{y}=\frac{f_{\max }}{y_{\max }}$
$\therefore \quad f=\frac{f_{\max }}{y_{\max }} \times y$
$\therefore \quad$ Force on shaded area $=\frac{f_{\max }}{y_{\max }} \times \Sigma A y$

$$
=\frac{f_{\max }}{y_{\max }}(A \bar{y})
$$

[where A is shaded area, $\bar{y}=$ distance of centroid of shaded area from N.A.]

$$
\begin{aligned}
& =\frac{90}{12} \times\left[\frac{15}{2} \times 12\right] \times \frac{2}{3} \times 12 \\
& =5400 \mathrm{~kg}
\end{aligned}
$$

18. (a)

$$
\begin{aligned}
\tau_{\max } & =\frac{16}{\pi D^{3}} \sqrt{M^{2}+T^{2}} \\
& =\left[\frac{16}{\pi(100)^{3}} \sqrt{(8)^{2}+(6)^{2}}\right] \times 10^{6} \\
& =\frac{16}{\pi} \times \frac{10 \times 10^{6}}{10^{6}}=50.93 \mathrm{MPa}
\end{aligned}
$$

19. (c)

Shear center for channel section,

$$
e=\frac{3 b^{2}}{6 b+h}=\frac{b}{2+\frac{h}{3 b}}
$$

Now,

$$
\begin{aligned}
\frac{h}{3 b} & =\frac{150}{3 \times 50}=1 \\
e & =\frac{50}{2+1}=\frac{50}{3}=16.67 \mathrm{~mm}
\end{aligned}
$$

20. (a)

Bending moment diagram (N.m)

Since the cross section of the beam is not constant, the maximum stress occurs either at the section just to the left of $B\left(M_{B}=-8000 \mathrm{Nm}\right)$ or at the section at $D\left(M_{D}=-16,000 \mathrm{Nm}\right)$
Section Modulus (z) at the two sections

$$
\begin{aligned}
& Z_{A B}=\frac{b h_{A B}^{2}}{6}=\frac{50 \times 100^{2}}{6}=83,333.3 \mathrm{~mm}^{3} \\
& Z_{B D}=\frac{b h_{B D}^{2}}{6}=\frac{50 \times 150^{2}}{6}=187,500 \mathrm{~mm}^{3}
\end{aligned}
$$

Maximum bending stress,

$$
\begin{aligned}
& \left(\sigma_{B}\right)_{\max }=\frac{\left|M_{B}\right|}{Z_{A B}}=\frac{8000 \times 10^{3}}{83,333.33}=96 \mathrm{MPa} \\
& \left(\sigma_{D}\right)_{\max }=\frac{\left|M_{D}\right|}{Z_{B D}}=\frac{16,000 \times 10^{3}}{187,500}=85.3 \mathrm{MPa}
\end{aligned}
$$

The maximum bending stress in the beam is

$$
\sigma_{\max }=96 \mathrm{MPa}
$$

21. (a)

The maximum shear stress may occur at the neutral axis (where Q is largest) or at level $a-a$ in the lower fin (where the with of the cross section is smaller than at the neutral axis)
Shear stress at neutral axis:
Area above the neutral axis is used.

$$
Q=A^{\prime} \bar{y}^{\prime}=(60 \times 219) \times \frac{219}{2}=1438830 \mathrm{~mm}^{3}
$$

Shear stress,

$$
\begin{aligned}
& \tau_{1}=\frac{V Q}{I b}=\frac{72 \times 10^{3} \times 1438830}{\left(440 \times 10^{6}\right) \times 60} \\
& \tau_{1}=3.92 \mathrm{MPa}
\end{aligned}
$$

Shear stress at $a-a$:
Area below the line a-a is easier to use.

$$
Q=A^{\prime} \bar{y}^{\prime}=(36 \times 225) \times\left(267-\frac{225}{2}\right)=1251450 \mathrm{~mm}^{3}
$$

Shear stress,

$$
\begin{aligned}
& \tau_{2}=\frac{V Q}{I b}=\frac{72 \times 10^{3} \times 1251450}{440 \times 10^{6} \times 36} \\
& \tau_{2}=5.69 \mathrm{MPa}
\end{aligned}
$$

The maximum shear stress is the larger of above two values occurring at a - a.

$$
\tau_{\max }=5.69 \mathrm{MPa}
$$

22. (a)

$$
\begin{array}{rlrl}
J & =\frac{\pi}{32}\left(d_{0}^{4}-d_{i}^{4}\right) \\
T & =\frac{G \theta}{L} \times J \\
& =\frac{8 \times 10^{4}}{250} \times\left(0.1 \times \frac{\pi}{180}\right)\left[\frac{\pi}{32} \times\left(150^{4}-75^{4}\right)\right] \mathrm{Nmm} \\
& =26.02 \mathrm{kNm} \\
\text { Now, } & P=T w, \\
& & \\
& & w & =\frac{2 \pi N}{60} \\
\therefore & P & =\frac{26.02 \times 2 \pi \times 500}{60}=1362.40 \mathrm{~kW}
\end{array}
$$

23. (a)

$$
\begin{aligned}
& \theta_{A C}=\theta_{\mathrm{AB}}+\theta_{\mathrm{BC}} \\
& \theta_{\mathrm{C}}=\frac{T_{A B} \times L_{A B}}{G J_{A B}}+\frac{T_{B C} \times L_{B C}}{G J_{B C}}\left(\because \theta_{A}=0\right) \\
& J_{B C}=\frac{\pi}{32}\left[D^{4}-\left(\frac{D}{2}\right)^{4}\right] \\
& J_{B C}=\frac{\pi}{32} D^{4}\left[1-\frac{1}{16}\right] \\
& J_{B C}=\frac{15}{16} J_{A B}=\frac{15}{16} J \\
& \therefore \quad \theta_{C}=\frac{T \times \cdots}{G J}+\frac{3 L}{4} \\
& \therefore \times \frac{15}{16} J
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{4} \frac{T L}{G J}+\frac{4}{15} \frac{T L}{G J} \\
& =\frac{45 T L+16 T L}{60 G J}=\frac{61}{60} \frac{T L}{G J}
\end{aligned}
$$

24. (c)

$$
\begin{aligned}
T & =T_{A}+T_{C} \\
\theta_{\mathrm{AB}}+\theta_{\mathrm{BC}} & =0 \\
\frac{T_{A B} L_{A B}}{(G J)_{A B}}+\frac{T_{B C} L_{B C}}{(G J)_{B C}} & =0 \\
\frac{\left(-T_{A}\right) \frac{L}{2}}{2 G J}+\frac{\left(T-T_{A}\right) \frac{L}{2}}{G J} & =0 \\
\frac{-T_{A}}{2}+\left(T-T_{A}\right) & =0 \\
T-\frac{3}{2} T_{A} & =0 \\
T_{A} & =\frac{2}{3} T
\end{aligned}
$$

25. (a)

$$
\sigma_{x}=80 \mathrm{MPa}, \sigma_{y}=20 \mathrm{MPa}, \tau_{x y}=-15 \mathrm{MPa}, \theta=45^{\circ}
$$

$$
\begin{aligned}
\sigma_{n} & =\sigma_{x} \cos ^{2} \theta+\sigma_{y} \sin ^{2} \theta+2 \tau_{x y} \cos \theta \sin \theta \\
& =80 \cos ^{2} 45^{\circ}+20 \sin ^{2} 45^{\circ}+2(-15) \cos 45^{\circ} \sin 45^{\circ} \\
& =80 \times \frac{1}{2}+20 \times \frac{1}{2}-2 \times 15 \times \frac{1}{2} \\
& =40+10-15=35 \mathrm{MPa}
\end{aligned}
$$

26. (d)

Since, bending moment is constant.
Also, cross-section is constant throughout the length.
From bending formula, $\frac{\sigma}{y}=\underbrace{\frac{M}{I}=\frac{E}{R}}$

$$
\begin{aligned}
& R=\frac{E I}{M} \\
& R=\text { Constant }
\end{aligned}
$$

Hence, deflection curve will be in the shape of a circular arc.
27. (b)

$$
\mathrm{MOR}=M_{w}+M_{s}
$$

$$
\begin{aligned}
& M=\sigma_{w} \times \frac{B D^{2}}{6}+m \sigma_{w} \times \frac{2 t D^{2}}{6}\left(\because \frac{\sigma_{s}}{\sigma_{w}}=\frac{E_{s}}{E_{w}}=m\right) \\
& M=\frac{\sigma D^{2}}{6}[B+2 m t]
\end{aligned}
$$

28. (a)

Total deflection at free end, $\delta=\frac{w L^{4}}{8 E I}=\frac{100(3)^{4} \times 10^{9}}{8 \times 5 \times 10^{10}}=20.25 \mathrm{~mm}$
Reaction at roller support is produced due to the deflection resisted i.e., $(20.25-3) \mathrm{mm}=17.25 \mathrm{~mm}$

$$
\begin{aligned}
\Rightarrow \quad 17.25 & =\frac{P \times(3)^{3} \times 10^{9}}{3 E I} \\
P & =95.83 \mathrm{~N}
\end{aligned}
$$

29. (a)

$$
\begin{aligned}
\sigma_{0} & =\frac{3 W_{0} L}{2 n b t^{2}} \\
L & =\frac{190 \times 2 \times 15 \times 75 \times 5^{2}}{3 \times 5 \times 10^{3}}=712.5 \mathrm{~mm} \\
\text { Radius of curvature, } \quad R & =\frac{L^{2}}{88_{0}}=\frac{(712.5)^{2}}{8 \times 20}=3172.85 \mathrm{~mm} \\
R & =3.17 \mathrm{~m}
\end{aligned}
$$

30. (a)

$$
\begin{aligned}
\delta & =\frac{P L}{A E} \\
\delta & =\delta_{C I}=\delta_{\text {steel }}=0.8 \mathrm{~mm} \\
\delta_{C I} & =\frac{P_{C I} \times 2000 \times 1000}{\frac{\pi}{4}\left(60^{2}-50^{2}\right) \times 10^{5}}=0.8 \mathrm{~mm} \\
\Rightarrow \quad P_{C I} & =11 \pi \mathrm{kN} \\
& \quad \begin{aligned}
& \text { steel }=\frac{P_{\text {steel }} \times 2000 \times 1000}{\pi}=0.8 \mathrm{~mm} \\
& \frac{\pi}{4} \times 50^{2} \times 2 \times 10^{5} \\
& \Rightarrow \quad P
\end{aligned} \\
\therefore \quad & =P_{C I}+P_{\text {steel }}=(11 \pi+50 \pi) \mathrm{kN} \\
&
\end{aligned}
$$

