CLASS TEST

MRDE ERSU
India's Best Institute for IES, GATE \& PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata
Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

ANALOG ELECTRONICS

ELECTRONICS ENGINEERING

Date of Test : 11/07/2024

ANSWER KEY >
1.
(b)
7. (b)

13
(d)
19. (c)
25. (c)
2. (a)
8. (a)
14. (b)
20. (a)
26. (b)
3. (a)
9. (c)
15. (c)
21. (c)
27. (b)
4. (c)
10. (c)
16. (d)
22. (c)
28. (c)
5.
(d)
11. (a)
17.
(b)
23. (a)
29. (d)
6.
(d)
12. (d)
18. (a)
24. (b)
30. (b)

Detailed Explanations

1. (b)

Case-I

For positive input voltage when $V_{i}>5.7 \mathrm{~V}$, the diode D_{1} will turn ON , thus voltage at the output $=5+0.7=5.7 \mathrm{~V}$.

Case-II

For negative input voltage when $V_{i}<-0.7 \mathrm{~V}$, then diode D_{2} will enter into forward region and thus will start conducting with a drop of 0.7 V on it.
Thus, $V_{0}=V_{\text {in }}$ for $-0.7 \mathrm{~V}<V_{i}<0$ and $V_{0}=0.7 \mathrm{~V}$ for $V_{i}<-0.7 \mathrm{~V}$.
2. (a)
\because The feedback is series-series feedback, so the amplifier will be a voltage amplifier.
3. (a)

The above circuit is a positive half-wave precision rectifier.
Case 1: If $V_{\text {in }}>0$, then diode will conduct thus, $V_{\text {out }}=V_{\text {in }}(\because$ the op-amp will work as a buffer.)
Case 2: If $V_{\text {in }}<0$, then diode will be OFF hence $V_{\text {out }}=0$.
4. (c)

For a fixed biased circuit,

$$
\begin{array}{rlrl}
I_{C} & =\beta I_{B}+(\beta+1) I_{c o} \\
\therefore & & \frac{\partial I_{c}}{\partial I_{c o}} & =(\beta+1) \\
\therefore & S & =\frac{\partial I_{c}}{\partial I_{c o}}=100+1=101
\end{array}
$$

5. (d)

The circuit can be redrawn as,

For current mirror circuit,
now,

$$
\begin{aligned}
I_{\text {reff }} & =\frac{V_{C C}-V_{B E}}{R}=\frac{10-0.7}{37 \times 10^{3}}=0.251 \mathrm{~mA} \\
I_{0} & =\frac{I_{\text {reff }}}{\left(1+\frac{2}{\beta}\right)}=\frac{0.251}{\left(1+\frac{2}{50}\right)}=0.241 \mathrm{~mA}
\end{aligned}
$$

6. (d)

The circuit can be redrawn as,

The circuit represents a voltage doubler circuit, if the voltage was taken by adding voltages of both the capacitors, but to calculate V_{0} we have to find the voltage stored on a single capacitor. Thus, comparing from the above figure,

$$
V_{0}=-V_{m}
$$

7. (b)

The early voltage V_{A} can be calculated as

$$
V_{A}=r_{0} I_{C}
$$

where $r_{0}=$ output resistance $=\frac{1}{\text { slope of } I_{C}-V_{C B} \text { curve }}$
thus,

$$
\begin{aligned}
r_{0} & =\frac{1}{3 \times 10^{-5}} \\
V_{A} & =\frac{1}{3 \times 10^{-5}} \times 3 \times 10^{-3}=100 \mathrm{~V} \quad\left(\because I_{C}=3 \times 10^{-3} \mathrm{~A}\right)
\end{aligned}
$$

8. (a)

Since, the op-amp represents a closed loop unity gain amplifier.
Thus,

$$
\begin{aligned}
A_{C L} & =\frac{A_{O L}}{1+A_{O L}} \\
& =\frac{999}{1+999}=0.999
\end{aligned}
$$

9. (c)

Now,

$$
I_{C}=\frac{12-6}{2.2} \times 10^{-3}=2.727 \mathrm{~mA}
$$

$\therefore \quad I_{B}=\frac{I_{C}}{\beta}=\frac{2.727}{30}=\frac{1}{11} \mathrm{~mA}$
Now,

$$
I_{2}=\frac{0.7-(-12)}{100 \mathrm{k} \Omega}=0.127 \mathrm{~mA}
$$

$\therefore \quad I_{1}=I_{2}+I_{B}=0.218 \mathrm{~mA}$
thus,
$V_{\text {in }}=I_{1} \times 15 \times 10^{3} \Omega+0.7$
$V_{\text {in }}=3.968 \mathrm{~V} \approx 3.97 \mathrm{~V}$
10. (c)

$$
\begin{array}{rlrl}
V^{\prime} & =\left(1+\frac{9 \mathrm{k} \Omega}{1 \mathrm{k} \Omega}\right) \times 1 \mathrm{~V} \quad(\because \text { non-inverting amplifier }) \\
& & V^{\prime} & =10 \mathrm{~V} \\
V_{01} & =V^{\prime}=10 \mathrm{~V} \quad(\because \text { it is a voltage buffer }) \\
\text { now, } \quad V_{02} & =-\frac{R}{2 R} V^{\prime} \quad(\because \text { inverting amplifier }) \\
& & V_{02} & =-\frac{1}{2} V^{\prime}=-\frac{10 \mathrm{~V}}{2}=-5 \mathrm{~V} \\
\therefore \quad V_{02}-V_{01} & =-5 \mathrm{~V}-10 \mathrm{~V}=-15 \mathrm{~V}
\end{array}
$$

11. (a)

Assume both the diode to be ON.

Applying the KCL at node V_{0}, we get,
$\frac{V_{0}+0.6-V_{s}}{5 \mathrm{k}}+\frac{V_{0}-V_{s}}{5 \mathrm{k}}+\frac{V_{0}}{500}+\frac{V_{0}-0.6}{500}=0$
$\therefore \quad V_{0}=\frac{2}{22} V_{s}+\frac{5.4}{22}$

$$
V_{0}=\frac{1}{11} V_{s}+\frac{54}{220}
$$

For diode D_{1} to be ON .

$$
\begin{aligned}
\therefore \quad V_{D 1} & =\frac{5 \mathrm{k} \Omega}{5 \mathrm{k} \Omega+0.5 \mathrm{k} \Omega} \times V_{s} \\
& =\frac{5}{5.5} \times V_{s}>0.6 \mathrm{~V}
\end{aligned}
$$

For diode D_{2} to be ON

$$
\begin{aligned}
V_{0} & >0.6 \mathrm{~V} \\
\frac{2 V_{s}+5.4}{22} & >0.6 \\
V_{s} & >3.9 \mathrm{~V}
\end{aligned}
$$

12. (d)

The above circuit can be redrawn as

$$
\begin{aligned}
& V_{\mathrm{Th}}=6.67 \mathrm{~V} \\
& R_{\mathrm{Th}}=10 \mathrm{k} \Omega| | 20 \mathrm{k} \Omega=6.67 \mathrm{k} \Omega
\end{aligned}
$$

Applying KVL in the emitter base loop.

$$
\begin{aligned}
& 10-(1+\beta) I_{B Q}(2 \mathrm{k} \Omega)-V_{E B}-I_{B Q}(6.67 \mathrm{k} \Omega)-V_{\mathrm{Th}}=0 \\
& I_{B Q}=\frac{10-6.67-0.7}{6.67+122} \times 10^{-3}=20.44 \mu \mathrm{~A} \\
& \therefore \quad I_{C Q}=\beta I_{B Q}=1.226 \mathrm{~mA} \\
& I_{E Q}=(\beta+1) I_{B Q}=1.247 \mathrm{~mA}
\end{aligned}
$$

Applying KVL in emitter-collector loop, we get,

$$
\begin{array}{ll}
10-I_{E} \times(2 \mathrm{k} \Omega)-V_{E C Q}-(2.2 \mathrm{k} \Omega) I_{C}+10=0 \\
& V_{E C Q}=20-1.247 \times 2-2.2 \times 1.226=14.81 \mathrm{~V} \\
\therefore & V_{C E Q}=-14.81 \mathrm{~V}
\end{array}
$$

13. (d)

Drawing small signal equivalent circuit,

thus, the circuit can be further reduced to

$$
\begin{aligned}
& \overline{\overline{=}} \\
& \therefore \quad I=\frac{V}{R_{2}}+\frac{V}{R_{E}}+\frac{V}{r_{0}}-(\beta+1) i_{b} \\
& \text { now, } \\
& i_{b}=-\frac{V}{r_{\pi}+R_{s} \| R_{1}} \\
& \therefore \quad I=V\left[\frac{1}{R_{2}}+\frac{1}{R_{E}}+\frac{1}{r_{0}}\right]+\frac{V}{\frac{r_{\pi}}{\beta+1}+\frac{R_{s} \| R_{1}}{\beta+1}} \\
& \therefore \quad \frac{V}{I}=\left(R_{2}\left\|r_{0}\right\| R_{E}\right) \|\left[\frac{1}{g_{m}}+\frac{R_{s} \| R_{1}}{\beta+1}\right] \\
& \because \quad g_{m} r_{\pi}=(\beta+1)
\end{aligned}
$$

14. (b)

$$
I=\frac{V_{i}}{R}
$$

Thus,

$$
\begin{aligned}
V_{c}(t) & =\frac{1}{C} \int_{0}^{t} I d t=\frac{1}{C} \int_{0}^{t} \frac{V_{i}}{R} d t \\
& =\frac{V_{i}}{C R} \cdot t
\end{aligned} \quad\left(\because V_{i} \text { is constant }\right)
$$

$$
\therefore \quad \begin{aligned}
V_{o}(t) & =-\frac{1 V \times\left(n T_{p}\right)}{10^{3} \times 10^{-5}}=-1 \mathrm{~V} \\
n T_{p} & =10^{-2} \text { and } T_{p}=10 \mu \mathrm{sec} \\
n & =\frac{10^{-2}}{10^{-5}}=1000
\end{aligned}
$$

Thus, minimum number of pulses required to reach the value of $\left|V_{o}\right|=1 \mathrm{~V}$ is 1000 .
15. (c)

Redrawing the circuit

$$
\begin{aligned}
I_{1} & =\frac{15-5}{10 \mathrm{k} \Omega}=1 \mathrm{~mA} \\
I_{E} & =\frac{5-0}{100}=50 \mathrm{~mA} \\
I_{E} & \approx I_{\mathrm{C}} \\
I & =I_{1}+I_{C}=(50+1) \mathrm{m}=51 \mathrm{~mA}
\end{aligned}
$$

16. (d)

For the circuit in fig. 1 the value of output voltage.
$V_{\text {out }}$ can be given as $V_{\text {out }}=V_{X 1}+V_{T h}$
and
$V_{X 1}=-V_{G S}$
where

$$
I_{D}=K_{n}\left(V_{G S}-V_{T h}\right)^{2}
$$

$$
\begin{aligned}
\sqrt{\frac{I_{D}}{K_{n}}} & =V_{G S}-V_{T h} \\
-V_{G S} & =-\sqrt{\frac{I_{D}}{K_{n}}}-V_{T h}
\end{aligned}
$$

$$
\begin{aligned}
-V_{G S}+V_{T h} & =-\sqrt{\frac{I_{D}}{K_{n}}} \\
V_{\text {out1 }} & =V_{X 1}+V_{T h}=-\sqrt{\frac{I_{D}}{K_{n}}}=-\sqrt{\frac{I_{i n}}{K_{n}}}
\end{aligned}
$$

now, for figure 2, since the two MOS circuit are in parallel thus,

and

$$
\begin{aligned}
I_{D 2}^{\prime} & =I_{D 2}=\frac{I_{\text {in }}}{2} \\
V_{\text {out2 }} & =-\sqrt{\frac{I_{D 2}}{K_{n}}}=-\sqrt{\frac{I_{\text {in }}}{2 K_{n}}}
\end{aligned}
$$

now for both transistors

$$
\begin{array}{rlrl}
I_{\mathrm{in}} & =\frac{V_{\text {in }}}{R_{1}} \\
\therefore & \frac{V_{\text {out } 2}}{V_{\text {out } 1}}=\frac{1}{\sqrt{2}} & =0.707
\end{array}
$$

17. (b)

Now,

$$
\therefore \quad V_{0}=V_{S}-I_{D} R_{f}=2-I_{D} R_{f}
$$

$$
\begin{aligned}
I_{D} & =K_{n}\left(V_{G S}-V_{\mathrm{T}}\right)^{2} \\
V_{G S} & =V_{G}-V_{S}=5 \mathrm{~V}-2 \mathrm{~V}=3 \mathrm{~V} \quad\left(\because V_{S}=2 \mathrm{~V} \text { due to virtual ground }\right) \\
I_{D} & =10^{-3}(3-1)^{2} \\
I_{D} & =4 \mathrm{~mA} \\
V_{0} & =V_{S}-I_{D} R_{f}=2-I_{D} R_{f} \\
& =2-4 \times 10^{-3} \times 1 \times 10^{3} \\
& =-2 \mathrm{~V}
\end{aligned}
$$

18. (a)
$\because R_{i} \neq \infty$ thus concept of virtual ground is not applicable for this circuit.

$$
\begin{aligned}
V_{0} & =-\frac{R_{2}}{R_{1}}\left[V_{\mathrm{in}}+\frac{V_{0}}{A_{v}}\right]-\frac{V_{0}}{A_{v}} \\
V_{0} & =-\frac{R_{2}}{R_{1}} V_{\mathrm{in}}-\frac{1}{A_{v}}\left[1+\frac{R_{2}}{R_{1}}\right] V_{0} \\
\therefore \quad \frac{V_{0}}{V_{\mathrm{in}}} & =\frac{-\frac{R_{2}}{R_{1}}}{1+\frac{1}{A_{v}}\left(1+\frac{R_{2}}{R_{1}}\right)}
\end{aligned}
$$

Thus,

$$
\frac{V_{0}}{V_{\mathrm{in}}}=\frac{-100 / 1}{1+\frac{1}{10^{3}}\left(1+\frac{100}{1}\right)}=\frac{-100}{1.1}=-90.83 \mathrm{~V} / \mathrm{V}
$$

19. (c)

Drawing the small signal equivalent model of the transistor, we get,

Applying KCL at node-2 we get

$$
\begin{aligned}
g_{m 1} V_{\pi 1}+\frac{V_{0}}{r_{\pi 2}} & =\mathrm{g}_{\mathrm{m} 2} V_{\pi 2} \\
\Rightarrow \quad g_{m 1} V_{\mathrm{in}}+\frac{V_{0}}{r_{\pi 2}} & =-g_{m 2} V_{0} \\
V_{0}\left[\frac{1}{r_{\pi 2}}+g_{m 2}\right] & =-g_{m 1} V_{\mathrm{in}}
\end{aligned}
$$

$$
\left|A_{v}\right|=\left|\frac{V_{0}}{V_{\mathrm{in}}}\right|=\frac{g_{m 1} r_{\pi 2}}{1+g_{m 2} r_{\pi 2}}
$$

Since $\beta \gg 1$ for both the transistors.
Thus, the above expression can be approximated as

$$
\left|A_{v}\right| \approx \frac{g_{m 1}}{g_{m 2}}
$$

20. (a)

In the circuit, the capacitor starts charging from 0 V (as the switch was initially closed) towards the steady state value of 20 V .
Now, when the switch is flipped open, the capacitor will charge upto 20 V .

$$
\begin{aligned}
\therefore & V_{c}(t) & =V_{c}(\infty)-\left[V_{c}(0)-V_{c}(\infty)\right] \mathrm{e}^{-t / R C} \\
& R C & =1 \times 10^{3} \times 0.01 \times 10^{-6}=10 \mu \mathrm{sec} \\
\therefore & V_{c}(t) & =20\left(1-e^{-t / R C}\right)
\end{aligned}
$$

Voltage at non-inverting amplifier is obtained as

$$
\begin{aligned}
& V^{+}=V_{0} \times \frac{100 \mathrm{k} \Omega}{(10+100) \mathrm{k} \Omega} \\
& V^{+}=V_{0} \times \frac{100}{110}=\frac{V_{0} \times 10}{11}
\end{aligned}
$$

\because Initially V^{-}was equal to -10 V , thus $V_{0}=+5.7 \mathrm{~V}$.
Thus, now capacitor will start charging as soon as the switch is opened.
Thus,

$$
V^{-}=V_{C}-10 \mathrm{~V}
$$

or,
$V_{C}=V^{-}+10 \mathrm{~V}$
now,

$$
V^{-}=V^{+}=\frac{5.7 \mathrm{~V} \times 10}{11} \quad[\because \text { the op-amp will switch }]
$$

thus,

$$
V_{C}=\frac{10 \times 5.7}{11}+10
$$

now, $\quad V_{C}=20\left(1-e^{-t / R C}\right)$

$$
\therefore \quad 20\left(1-e^{-t / R C}\right)=10+\frac{57}{11}
$$

$$
1-e^{-t / R C}=\frac{1}{2}+\frac{57}{220}
$$

$$
1-e^{-t / R C}=0.7590
$$

$$
e^{-t / R C}=0.2409
$$

$$
T=14.23 \mu \mathrm{sec}
$$

Hence, the output voltage wave will be,

21. (c)

Now,

$$
g_{m 1}=2 \sqrt{k_{n 1} I_{D_{1}}}=2 \sqrt{0.5 \times 0.2 \times 10^{-6}}=0.632 \mathrm{~mA} / \mathrm{V}
$$

and

$$
g_{m 2}=2 \sqrt{k_{n 2} I_{D_{2}}}=2 \sqrt{(0.2)(0.5) \times 10^{-6}}=0.632 \mathrm{~mA} / \mathrm{V}
$$

Now, drawing the small signal equivalent circuit, we get,

Now,

$$
\begin{equation*}
V_{0}=g_{m 2}\left(R_{S 2}| | R_{L}\right) \cdot V_{g s 2} \tag{i}
\end{equation*}
$$

Also,

$$
\begin{equation*}
V_{g s 2}+V_{0}=-g_{m 1} V_{g s 1} R_{D 1} \tag{ii}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{g s 1}=\frac{R_{1} \| R_{2}}{R_{1} \| R_{2}+R_{S i}} \times V_{i} \tag{iii}
\end{equation*}
$$

Putting values of $V_{g s 1}$ and $V_{g s 2}$ from equation (i) and (iii) in equation (ii), we get

$$
\begin{aligned}
& \frac{V_{0}}{g_{m_{2}}\left(R_{S 2}| | R_{1}\right)}+V_{0} & =-g_{m 1} R_{D 1}\left[\frac{R_{1} \| R_{2}}{R_{1}| | R_{2}+R_{S i}}\right] \cdot V_{i} \\
\therefore \quad & A_{V} & =\frac{V_{0}}{V_{i}}=\frac{-g_{m 1} g_{m 2} R_{D 1}\left(R_{S 2} \| R_{L}\right)}{1+g_{m 2}\left(R_{S 2}| | R_{L}\right)} \times\left[\frac{R_{1} \| R_{2}}{R_{1} \| R_{2}+R_{S i}}\right]
\end{aligned}
$$

$$
\text { Now, } \quad R_{S 2} \| R_{L}=\frac{8}{3} \mathrm{k} \Omega
$$

$$
R_{1} \| R_{2}=99.8 \mathrm{k} \Omega \approx 100 \mathrm{k} \Omega
$$

$$
\therefore \quad A_{v}=\frac{V_{0}}{V_{i}}=\frac{-(0.632)(0.632)(16.1)(8 / 3)}{1+(0.632)(8 / 3)} \times\left[\frac{100}{104}\right]
$$

$$
\approx-6.14
$$

22. (c)

Assuming all the diodes are forward biased,

$$
\begin{aligned}
V_{B} & =-0.7 \mathrm{~V} \\
V_{A} & =0 \mathrm{~V}
\end{aligned}
$$

$\therefore \quad I_{2}=\frac{10-0}{10 \mathrm{k}}=1 \mathrm{~mA}$
and

$$
I_{1}=\frac{-0.7-(-10)}{10 \mathrm{k}}=0.93 \mathrm{~mA}
$$

$\because \quad I_{2}=I_{D_{1}}+I_{D_{2}}$
and

$$
I_{1}=I_{D_{2}}+I_{D_{3}}
$$

applying KVL in the outer loop, we get,

$$
\begin{aligned}
10 \mathrm{k} I_{2}+0.7+10 \mathrm{k} I_{D_{1}}-20 & =10 \\
10 \mathrm{k}\left(I_{D_{1}}+I_{D_{2}}\right)+10 \mathrm{k} I_{D_{1}} & =30-0.7=29.3 \\
20 \mathrm{k} I_{D_{1}}+10 \mathrm{k} I_{D_{2}} & =29.3 \\
2 I_{D_{1}}+I_{D_{2}} & =2.93 \mathrm{~mA}
\end{aligned}
$$

from (i) and (ii)

$$
\begin{aligned}
& I_{D_{1}} & =1.93 \mathrm{~mA} \text { and } I_{D_{2}}=-0.93 \mathrm{~mA} \\
\because & I_{D_{2}}+I_{D_{3}} & =0.93 \mathrm{~mA} \\
\Rightarrow & I_{D_{3}} & =-I_{D_{2}}+0.93 \mathrm{~mA}=1.86 \mathrm{~mA}
\end{aligned}
$$

Here $I_{D_{2}}$ is negative, Hence, our assumption is incorrect.
Therefore, D_{2} is reverse biased and $\because I_{D_{1}}$ and $I_{D_{3}}$ are positive, D_{1}, D_{3} are forward biased.
23. (a)

now,

$$
I_{E}=I_{E}^{\prime}+1 \mathrm{~mA}
$$

$$
\begin{array}{ll}
& I_{E}=1 \mathrm{~mA}-0.7 \mathrm{~mA}=0.3 \mathrm{~mA} \\
\text { now, } & I_{C}=\alpha I_{E}
\end{array}
$$

$$
\alpha=\frac{\beta}{1+\beta}=\frac{99}{1+99}=0.99
$$

$$
\therefore \quad I_{C}=0.99 \times 0.3=0.297 \mathrm{~mA}
$$

$$
\therefore \quad I_{2}+I_{C}=5 \mathrm{~mA}
$$

$$
I_{2}=5 \mathrm{~mA}-I_{C}
$$

$$
=4.703 \mathrm{~mA}
$$

$$
\therefore \quad V_{C}=I_{2} \cdot R_{C}=4.703 \times 2
$$

$$
V_{C}=9.406
$$

$$
\therefore \quad V_{C E}^{C}=9.406+0.7=10.1 \mathrm{~V}
$$

24. (b)

The small signal r_{e} equivalent circuit can be drawn as

Combining equation (i) and (ii), we get,
thus,

$$
\begin{aligned}
V_{0} & =\frac{\alpha\left(R_{C} \| R_{L}\right)}{R_{\mathrm{sig}}+r_{e}} \cdot V_{\mathrm{sig}} \\
\frac{V_{0}}{V_{\mathrm{sig}}} & =\frac{\alpha\left(R_{\mathrm{C}} \| R_{L}\right)}{R_{\mathrm{sig}}+r_{e}}
\end{aligned}
$$

25. (c)

The small signal equivalent model can be drawn as
\therefore The output can be expressed as,

$$
\begin{equation*}
V_{0}=\frac{R}{R+r_{f}} V_{i n}-\frac{R}{R+r_{f}} V_{\gamma} \tag{i}
\end{equation*}
$$

Thus, the slope of line in the graph of the input output curve can be written

$$
\text { Slope }=\frac{R}{R+r_{f}}=\frac{1.2}{2-0.7}=\frac{1.2}{1.3} \quad \ldots \text { from equation (i) }
$$

Thus,

$$
r_{f}=83.33 \Omega
$$

26. (b)

Case -I: When $V_{\text {in }}>-10 \mathrm{~V}$, then the voltage across diode D_{1} is positive so diode D_{1} is in ON state, and therefore the equivalent circuit can be drawn as

$$
V^{+}=-15 \times \frac{10}{15}=-10 \mathrm{~V}
$$

Due to virtual ground, $V^{+}=V^{-}=-10 \mathrm{~V}$
and
$V_{0}=V^{-}=-10 \mathrm{~V}$
\therefore

$$
V_{0}=-10 \mathrm{~V}
$$

Case -II : When $V_{\text {in }}<-10 \mathrm{~V}$

$$
V_{0}=+V_{\text {sat }}
$$

Thus,

$\therefore \quad V_{0}=-\frac{5}{5} \times V_{\text {in }}=-V_{\text {in }}\left(\right.$ for $\left.V_{\text {in }}<-10 \mathrm{~V}\right)$
Alternately, we can write the equation of the graph by applying KCL at node V^{-}
$\because \quad V^{-}=V^{+}=-10 \mathrm{~V}$

$$
\begin{aligned}
\frac{-10-V_{\mathrm{in}}}{5 \mathrm{k} \Omega}+\frac{-10-V_{0}}{5 \mathrm{k} \Omega} & =0 \\
-20-V_{\mathrm{in}}-V_{0} & =0 \\
V_{0} & =-V_{\mathrm{in}}-20
\end{aligned}
$$

27. (b)

For transistor Q_{2}, we can calculate the equivalent resistance as

$\therefore \quad I=\frac{V_{\pi}}{r_{\pi 2}}+g_{m 2} V_{\pi}$
Now,

$$
V_{\mathrm{in}}=V_{\pi}
$$

$\therefore \quad \frac{I}{V_{\mathrm{in}}}=\frac{1}{r_{\pi 2}}+g_{m 2}$
or

$$
R^{\prime}=r_{\pi 2} \| \frac{1}{g_{m 2}}
$$

Now, the circuit can be redrawn as

$$
\begin{aligned}
& I=-I_{B 1}-\beta_{1} I_{B 1} \\
& I=-\left(1+\beta_{1}\right) I_{B 1}
\end{aligned}
$$

Now,

$$
I_{B 1}=\frac{-V}{r_{\pi 1}+R^{\prime} \| R_{2}}
$$

$$
\therefore \quad \frac{V}{I}=\frac{r_{\pi 1}+R^{\prime}| | R_{2}}{\beta_{1}+1}
$$

$$
\therefore \quad R_{\mathrm{in}}=\frac{1}{\beta_{1}+1}\left(r_{\pi 1}+\frac{1}{g_{m 2}}\left\|r_{\pi 2}\right\| R_{2}\right)
$$

$$
\because \quad \text { where, } \beta_{1}=99
$$

$$
\therefore \quad R_{\mathrm{in}}=\frac{1}{100}\left(r_{\pi 1}+\frac{1}{g_{m 2}}\left\|r_{\pi 2}\right\| R_{2}\right)
$$

28. (c)

For negative cycle $V_{\text {in }}<3.2 \mathrm{~V}$ always, thus the MOSFET M_{1} will be OFF and diode D_{1} will be ON

$$
\begin{array}{ll}
\therefore & V_{C}=\frac{I}{C} \cdot t \\
\Rightarrow & V_{C}=\frac{I}{C} \cdot T_{o f f}=\frac{I}{C}(1-D) T
\end{array}
$$

Now, when $V_{\text {in }}>3.2 \mathrm{~V}$, thus the MOSFET transistor will be switched ON and hence

Now, since R is very large, thus, V_{c} will not reduce substantially and thus, V_{C} will not change during the positive going pulse.

Hence, after 5 clock pulse value of V_{c}

$$
V_{c}=\frac{5 I}{C}(1-D) T
$$

29. (d)

$$
\begin{aligned}
I_{D} & =k_{n}\left(V_{G S}-V_{\mathrm{th}}\right)^{2}\left(1+\lambda V_{D S}\right) \\
r_{0} & =\frac{\Delta V_{D S}}{\Delta I_{D}}=\frac{1}{\left(\partial I_{D} / \partial V_{D S}\right)} \\
\frac{\partial I_{D}}{\partial V_{D S}} & =k_{n}\left(V_{G S}-V_{\mathrm{th}}\right)^{2} \lambda \\
V_{G S} & =0.5, \quad I_{D}=1 \mathrm{~mA} \\
\text { so, } \quad 1 \mathrm{~mA} & =k_{n}\left(V_{G S}-V_{\mathrm{th}}\right)^{2}(1+0.05) \\
k_{n}\left(V_{G S}-V_{\mathrm{th}}\right)^{2} & =\frac{1}{1.05} \mathrm{~m} \mho \\
r_{0} & =\frac{1.05}{0.1} \mathrm{k} \Omega=10.5 \mathrm{k} \Omega
\end{aligned}
$$

30. (b)

For the transistor

$$
V_{S}=V_{B}=V_{A}
$$

due to virtual ground,
thus,

$$
V_{S}=0 \mathrm{~V}
$$

Hence,

$$
I_{D}=\frac{0-(-10)}{10 \times 10^{3}}=1 \mathrm{~mA}
$$

$$
I_{D}=\frac{\mu_{n} C_{o x} W}{2 L}\left(V_{G S}-V_{T}\right)^{2}
$$

$$
\therefore \quad V_{G S}-V_{T}=\sqrt{\frac{I_{D}}{\frac{\mu_{n} C_{o x} W}{2 L}}}
$$

$$
V_{G S}-V_{T}=\sqrt{\frac{1 \times 10^{-3}}{\frac{0.5 \times 10^{-3}}{2}}}
$$

$$
V_{G S}-V_{T}=2 \mathrm{~V}
$$

For the MOSFET to be in saturation region

$$
V_{D S} \geq V_{G S}-V_{T}
$$

\therefore at the edge of saturation

$$
\begin{aligned}
& V_{D S}=V_{G S}-V_{T}=2 \mathrm{~V} \\
& \because \quad V_{S}=0 \\
& \therefore \quad V_{D}=V_{G}-V_{T} \\
& \Rightarrow \quad V_{D D}=2 \mathrm{~V}
\end{aligned}
$$

