

DETAILED EXPLANATIONS

1. (b)

Assume the three number are $a-d$, a and $a+d$, where d is the difference between two consecutive number.
Then,

$$
\begin{aligned}
a-d+a+a+d & =15 \\
3 a & =15 \\
a & =5
\end{aligned}
$$

Also, $\quad(5-d)^{2}+5^{2}+(5+d)^{2}=83$
$25+d^{2}-10 d+25+25+d^{2}+10 d=83$

$$
75+2 d^{2}=83
$$

$$
2 d^{2}=8
$$

$$
d= \pm 2
$$

Then the possible smallest number $=5-2=3$
2. (a)

Assume the current age of Shyam and Kavita are x and y years respectively.
then,

$$
\begin{align*}
& \frac{x}{y}=\frac{2}{6} \\
& \frac{x}{y}=\frac{1}{3} \tag{i}
\end{align*}
$$

5 years after, the ratio of their ages

From eq. (i),

$$
\begin{aligned}
\frac{x+5}{y+5} & =\frac{6}{8}=\frac{3}{4} \\
4 x+20 & =3 y+15 \\
3 y-4 x & =5
\end{aligned}
$$

\therefore

$$
y=32 x
$$

$$
3(3 x)-4 x=5
$$

$$
5 x=5
$$

$$
x=1 \text { year, } y=3 \text { year }
$$

After 10 years, the average of their ages

$$
\begin{aligned}
& =\frac{10+x+10+y}{2} \\
& =10+\frac{x+y}{2}=10+\frac{1+3}{2}=12 \text { years }
\end{aligned}
$$

3. (a)

$$
\text { Average speed }=\frac{\text { Total distance }}{\text { Total time }}=\frac{8+6+40}{\frac{1}{4}+\frac{1}{4}+\frac{1}{4}}=54 \times \frac{4}{3}=72 \mathrm{~km} / \mathrm{hr}
$$

4. (a)

Initial price of a cow and a calf was Rs. 2000 and Rs. 1400.
After increment the price becomes Rs. 2400 and Rs. 1820.

Then the total cost are $=2400 \times 12+1820 \times 24=$ Rs. 72,480
5. (c)

$$
\begin{aligned}
& \text { Side of triangle } A B C=2 \mathrm{~cm} \\
& \text { Area of triangle } A B C=\frac{\sqrt{3}}{4}(2)^{2}=\sqrt{3} \mathrm{~cm}^{2} \\
& \text { Sector Area }=\left[\frac{\theta}{360^{\circ}} \times \pi(1)^{2}\right] \times 3=\frac{60^{\circ}}{360^{\circ}} \times \pi(1)^{2} \times 3=\frac{\pi}{2} \mathrm{~cm}^{2} \\
& \text { Hence, shaded area }=\left[\sqrt{3}-\frac{\pi}{2}\right] \mathrm{cm}^{2}
\end{aligned}
$$

6. (d)

If x is the distance which is travelled by Vikash and S_{v} and S_{w} are the speed of Vikash and water stream.
then,

$$
\begin{align*}
\frac{x}{S_{v}+S_{w}} & =6 \mathrm{hr} \tag{1}\\
\frac{x}{S_{v}-S_{w}} & =9 \mathrm{hr} \tag{2}
\end{align*}
$$

From (1) and (2),

$$
\begin{aligned}
\frac{S_{v}-S_{w}}{S_{v}+S_{w}} & =\frac{6}{9}=\frac{2}{3} \\
3 S_{v}-3 S_{w} & =2 S_{v}+2 S_{w} \\
S_{v} & =5 S_{w} \\
S_{v} & =3 \times 5 \\
S_{v} & =15 \mathrm{~km} / \mathrm{hr}
\end{aligned}
$$

7. (a)

Let r (in cm) is the radius of smaller circle, then the radius of bigger circle will be $(r+6) \mathrm{cm}$

Hence,

$$
\begin{aligned}
\pi(r)^{2}+\pi(r+6)^{2} & =116 \pi \\
r^{2}+r^{2}+36+12 r & =116 \\
2 r^{2}+12 r & =80 \\
r^{2}+6 r-40 & =0 \\
(r+10)(r-4) & =0 \\
r & =4
\end{aligned}
$$

Hence, radius of bigger circle $=4+6=10 \mathrm{~cm}$
8. (b)

Given:

$$
\begin{aligned}
\frac{1}{\log _{x y}^{x y z}}+\frac{1}{\log _{y z}^{x y z}}+\frac{1}{\log _{z x}^{x y z}} & =\log _{x y z}^{x y}+\log _{x y z}^{y z}+\log _{x y z}^{z x} \\
& =\log _{x y z}^{(x y \cdot y z \cdot z x)} \\
& =\log _{x y z}^{(x y z)^{2}} \\
& =2
\end{aligned}
$$

9. (d)

Total percentage of students who will be declared pass

$$
=13+12+6+8=39 \%
$$

Hence, total number of students who will be declared pass

$$
=\frac{39}{100} \times 200=78
$$

10. (b)

Hence, total number of members that the club have

$$
=200+220+130=550
$$

11. (a)

Total number of people whose subscribe atleast one channel

$$
=5000+4000+8000=17000
$$

Then, the people who do not subscribe any of the two channel

$$
=20000-17000=3000
$$

12. (c)

The condition for both the roots of the equation $a x^{2}+b x+c=0$ are positive, if

$$
\frac{-b}{a}>0 \text { and } \frac{c}{a}>0
$$

Given equation $x^{2}-2(k-1) x+(2 k+1)=0$ whose roots are positive,

$$
\begin{align*}
\frac{-b}{a} & =\frac{2(k-1)}{1}>0 \\
k & >1 \tag{i}\\
\frac{c}{a} & =\frac{2 k+1}{1}>0 \\
k & >\frac{-1}{2} \tag{ii}
\end{align*}
$$

From (i) and (ii) $k>1$
Hence, from options least value of $k=4$
13. (c)

Let α, β be the roots of the equation, $a x^{2}+b x+c=0$

$$
\begin{aligned}
\therefore \quad \text { Sum of roots }(\alpha+\beta) & =\frac{-b}{a} \\
& \text { and product of roots }(\alpha \beta)
\end{aligned}=\frac{c}{a}
$$

By given condition,

$$
\begin{aligned}
\alpha+\beta & =\alpha^{2}+\beta^{2} \\
\alpha+\beta & =(\alpha+\beta)^{2}-2 \alpha \beta \\
\frac{-b}{a} & =\left(\frac{-b}{a}\right)^{2}-2\left(\frac{c}{a}\right) \\
-b a & =b^{2}-2 c a \\
2 a c & =b^{2}+a b
\end{aligned}
$$

14. (a)

$$
\begin{aligned}
\text { Volume of each cube } & =216 \mathrm{~m}^{3} \\
\text { Side of each cube } & =\sqrt[3]{216}=6 \mathrm{~m}
\end{aligned}
$$

By joining the cube end to end, it will be converted into cuboid, whose $l=18 \mathrm{~m}, \mathrm{~b}=6 \mathrm{~m}, \mathrm{~h}=6 \mathrm{~m}$ then, the surface are of the cuboid $=2(l b+b h+h l)$

$$
\begin{aligned}
& =2(18 \times 6+6 \times 6+6 \times 18) \\
& =2(108+36+108)=504 \mathrm{~m}^{2}
\end{aligned}
$$

15. (a)

If L_{f} is the length of faster train and V_{f} and V_{s} are the speed of faster and slower train which are 40 kmph and 20 kmph respectively.
then,

$$
\begin{aligned}
\frac{L_{f}}{V_{f}-V_{s}} & =\frac{36}{3600} \mathrm{hr} \\
\frac{L_{f}}{40-20} & =\frac{1}{100} \\
L_{f} & =\frac{20}{100} \mathrm{~km}
\end{aligned}
$$

$$
\begin{aligned}
& L_{f}=\frac{20}{100} \times 1000 \\
& L_{f}=200 \mathrm{~m}
\end{aligned}
$$

16. (c)

Distance between two poles $=50 \mathrm{~m}$,
Distance covered by train $=45 \times 4=180 \mathrm{~km}$
Number of poles counted by passenger $=\frac{180 \times 1000}{50}=3600$
17. (b)

Time taken by both the pipes when they are opened simultaneously,

$$
\begin{aligned}
\Rightarrow \quad \frac{1}{14}+\frac{1}{16} & =\frac{1}{t_{1}} \\
t_{1} & =\frac{112}{15} \mathrm{hrs}
\end{aligned}
$$

Let's assume to leakage it will take $t_{2} \mathrm{hr}$ to fill the tank
then,

$$
\begin{aligned}
& t_{2}=t_{1}+\frac{32}{60} \mathrm{hr} \\
& t_{2}=\frac{112}{15}+\frac{8}{15} \mathrm{hr} \\
& t_{2}=8 \mathrm{hr}
\end{aligned}
$$

If x is the rate of then leakage,
then

$$
\begin{aligned}
\Rightarrow & \frac{1}{14}+\frac{1}{16}-\frac{1}{x} & =\frac{1}{8} \\
\Rightarrow & \frac{15}{112}-\frac{1}{x} & =\frac{1}{8} \\
\Rightarrow & \frac{1}{x} & =\frac{15}{112}-\frac{1}{8} \\
\Rightarrow & \frac{1}{x} & =\frac{1}{112} \\
\Rightarrow & x & =112 \mathrm{hr}
\end{aligned}
$$

18. (c)

Given:
A, B and C independently can finish the work in 24,32 and 60 days respectively.
Let's assume x days more are required to complete the whole work.
then, $\left(\frac{1}{24}+\frac{1}{32}+\frac{1}{60}\right) \times 6+\left(\frac{1}{32}+\frac{1}{60}\right) \times 2+x \times \frac{1}{60}=1$
$\Rightarrow\left(\frac{1}{2^{3} \times 3}+\frac{1}{2^{5}}+\frac{1}{2^{2} \times 3 \times 5}\right) \times 6+\left(\frac{1}{2^{5}}+\frac{1}{2^{2} \times 3 \times 5}\right) \times 2+\frac{x}{60}=1$

$$
\begin{array}{rlrl}
& \Rightarrow & \left(\frac{2^{2} \times 5+3 \times 5+2^{3}}{2^{5} \times 3 \times 5}\right) \times 6+\left(\frac{3 \times 5+2^{3}}{2^{5} \times 3 \times 5}\right) \times 2+\frac{x}{60}=1 \\
\Rightarrow & \left(\frac{43 \times 6+23 \times 2}{2^{5} \times 15}\right)+\frac{x}{60} & =1 \\
\Rightarrow & & \frac{19}{30}+\frac{x}{60} & =1 \\
\Rightarrow & & \frac{x}{60} & =\frac{11}{30} \\
& \Rightarrow & x & =22 \text { days }
\end{array}
$$

19. (b)

Let's assume Ashok, Mohan and Binod independently can finish the work in x days, y days and z days respectively.

Then,

$$
\begin{align*}
\frac{1}{x}+\frac{1}{y} & =\frac{1}{12} \tag{i}\\
\frac{1}{y}+\frac{1}{z} & =\frac{1}{15} \tag{ii}\\
\frac{1}{x} & =2\left(\frac{1}{z}\right) \tag{iii}
\end{align*}
$$

From (i), (ii) and (iii)

$$
z=60 \text { days, } x=30 \text { days, and } y=20 \text { days }
$$

20. (b)

Let, the cost price of 50 mangoes $=$ Rs. $x=$ selling price of 40 mangoes
$\therefore \quad$ Cost price of one mango $=$ Rs. $\cdot \frac{x}{50}$
Selling price of one mango $=$ Rs. $\frac{x}{40}$

$$
\begin{aligned}
\text { Profit\% } & =\frac{S . P .-C . P}{C . P} \times 100 \\
& =\frac{\frac{x}{40}-\frac{x}{50}}{\frac{x}{50}} \times 100=\left(\frac{5}{4}-1\right) \times 100=25 \%
\end{aligned}
$$

21. (c)

Let the total number of voter $=x$
Among these voters $\frac{4 x}{5}$ wants to vote for person A and $\frac{x}{5}$ wants to vote for person B.
On election days,
Total number of voters who vote for person $A=\frac{4 x}{5} \times 0.9=\frac{3.6 x}{5}$

Total number of voters who vote for person is $=\frac{x}{5} \times 0.8=\frac{0.8 x}{5}$

$$
\begin{aligned}
\therefore \quad \frac{3.6 x}{5} & =216 \\
x & =300
\end{aligned}
$$

So, on election day total number of votes polled

$$
\begin{aligned}
& =\frac{3.6 x}{5}+\frac{0.8 x}{5} \\
& =\frac{3.6 \times 300}{5}+\frac{0.8 \times 300}{5}=216+48=264
\end{aligned}
$$

22. (c)

When the grapes become dry, then the weight of their water part gets reduced, but weight of other parts remains the same.
Let the weight of dry grapes is $x \mathrm{~kg}$.
then

$$
\begin{aligned}
20 \times 0.1 & =x \times 0.8 \\
x & =\frac{2}{0.8} \\
x & =2.5 \mathrm{~kg}
\end{aligned}
$$

23. (c)

Let the length of the middle sized piece is $x \mathrm{~cm}$.

$$
\text { Then, length of largest piece }=3 x \mathrm{~cm}
$$

Length of shortest piece $=(3 x-46) \mathrm{cm}$
$\Rightarrow \quad 3 x+x+3 x-46=80$
$\Rightarrow \quad 7 x=126$
$\Rightarrow \quad x=18$
Length of the shortest piece $=3 x-46$

$$
=54-46=8 \mathrm{~cm}
$$

24. (c)

$$
\text { Initial height }=120 \mathrm{~m}
$$

Total distance

$$
\begin{aligned}
& =120+2 \times\left[120 \times \frac{4}{5}+120 \times\left(\frac{4}{5}\right)^{2}+120 \times\left(\frac{4}{5}\right)^{3} \cdots\right] \\
& =120+2 \times 120 \times \frac{4}{5}\left[1+\left(\frac{4}{5}\right)+\left(\frac{4}{5}\right)^{2}+\ldots\right]
\end{aligned}
$$

$$
=120+192 \times \frac{1}{1-\frac{4}{5}}=120+192 \times 5=1080 \text { meters }
$$

25. (b)

$$
\log _{10}^{\sqrt{x}}=\frac{1}{2} \log _{10}^{x}
$$

\therefore The equation becomes,

$$
\begin{array}{rlrl}
& & \log _{10}^{x}-\frac{1}{2} \log _{10}^{x} & =2 \log _{x}^{10} \\
\Rightarrow & \frac{1}{2} \log _{10}^{x} & =\frac{2}{\log _{10}^{x}} \\
\Rightarrow & \left(\log _{10}^{x}\right)^{2} & =4 \\
\Rightarrow & \log _{10}^{x} & =2 \text { or } \log _{10}^{x}=-2 \\
\Rightarrow & x & =100 \text { or } x=\frac{1}{100}
\end{array}
$$

From the given options x can taken the only value equal to 100 .
26. (d)

Let equal sides of the isosceles triangle be x,
Then

$$
\begin{aligned}
x^{2}+x^{2} & =10^{2} \\
x & =5 \sqrt{2} \mathrm{~cm}
\end{aligned}
$$

So,

$$
\begin{aligned}
\text { Final area } & =8 \times\left(\frac{1}{8} \times \pi \times 10^{2}-\frac{1}{2} 5 \sqrt{2} \times 5 \sqrt{2}\right) \\
& =\pi \times 10^{2}-4 \times 25 \times 2 \\
& =100 \pi-200 \\
\text { Area } & =114.16 \mathrm{~cm}^{2}
\end{aligned}
$$

27. (b)

We note that there are 3 consonants M, C and T and 3 vowels E, A and O. Since no two vowels have to be together the possible choice for vowels are the places marked as ' X '.
X M X C X T X,
These vowels can arranged in ${ }^{4} P_{3}$ ways and 3 consonants can be arranged in 3 ! ways. Hence, the required number of ways $=3!\times{ }^{4} P_{3}$

$$
=3!\times \frac{4!}{1!}=144
$$

28. (d)

$$
\begin{gathered}
\frac{2.32^{3}+1.44^{3}+2.88^{3}-3 \times 2.32 \times 1.44 \times 2.88}{2.32^{2}+1.44^{2}+4 \times 1.44^{2}-2 \times 1.44^{2}-2.32 \times 1.44-2.32 \times 2.88} \\
\frac{2.32^{3}+1.44^{3}+2.88^{3}-3 \times 2.32 \times 1.44 \times 2.88}{2.32^{2}+1.44^{2}+2.88^{2}-2.88 \times 1.44-2.32 \times 1.44-2.32 \times 2.88}
\end{gathered}
$$

$$
\begin{aligned}
\Rightarrow \quad \frac{a^{3}+b^{3}+c^{3}-3 a b c}{a^{2}+b^{2}+c^{2}-a b-b c-c a} & =a+b+c \\
2.32+1.44+2.88 & =6.64
\end{aligned}
$$

29. (a)

$$
\begin{aligned}
\text { man } \times \text { day } & =40 \times 400=16000 \\
\text { After } 32 \text { days } \Rightarrow \quad \text { Remaining, man } \times 400 & =12800 \\
\text { So, day } & =3200 \\
\therefore \quad 80 \times \text { Day } & =3200 \\
\text { Day } & =40 \text { days }
\end{aligned}
$$

30. (c)

$$
\begin{aligned}
\frac{\alpha}{\beta}+\frac{\beta}{\alpha} & =\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta}=\frac{(\alpha+\beta)^{2}}{\alpha \beta}-2 \\
& =\frac{(12 / 8)^{2}}{a / 8}-2=\frac{144}{8 a}-2=\frac{18}{a}-2 \\
\text { Minimum value } & =-2(\text { When } a \rightarrow \infty)
\end{aligned}
$$

