

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

REASONING AND APTITUDE

EC & EE

Date of Test: 14/07/2024

ANSWER KEY >

1.	(b)	7.	(c)	13.	(a)	19.	(b)	25.	(b)
2.	(c)	8.	(d)	14.	(b)	20.	(b)	26.	(d)
3.	(d)	9.	(d)	15.	(d)	21.	(c)	27.	(b)
4.	(a)	10.	(d)	16.	(d)	22.	(c)	28.	(d)
5.	(c)	11.	(b)	17.	(b)	23.	(c)	29.	(a)
6.	(b)	12.	(d)	18.	(c)	24.	(c)	30.	(c)

DETAILED EXPLANATIONS

1. (b)

2. (c)

As code must include all the three letters then pattern of the code word is *ABCX* where *X* can be any letter out of *A*, *B*, and *C*. So we can have the code word consisting of letters:

ABCA;

ABCB;

ABCC.

We can arrange letters in each of above 3 cases in $\frac{4!}{2!}$ number of ways (as each case has 4 letters

out of which one is repeated twice), so total number of code words is $3 \times \frac{4!}{2!} = 36$.

3. (d)

Initial solution is "half water/half alcohol mix" means it's 50% (0.5) alcohol solution.

Let the portion replaced be *x* and the volume of initial solution be 1 unit.

Then the amount of alcohol after removal of a portion will be 0.5 (1 - x) and the amount of alcohol added will be 0.25x, so total amount of alcohol will be (1 - x) + 0.25x. On the other hand as in the end 30% alcohol solution was obtained then the amount of alcohol in the end was 0.3×1 .

So $0.5 (1 - x) + 0.25x = 0.3 \Rightarrow x = 0.8$, or 80%.

4. (a)

From figures, we conclude that 2, 3, 5 and 6 are adjacent to 1. Therefore, 4 lies opposite 1. Hence, when 4 is at the bottom, then 1 must be on the top.

5. (c)

Let the number of children in the lift is *x*

Now, $\frac{6}{18} + \frac{10}{24} + \frac{x}{32} = 1$

$$\frac{x}{32} = 1 - \frac{1}{3} - \frac{5}{12}$$

Maximum number of children that can board the lift $x = \frac{32}{4} = 8$ children

6. (b)

A careful look will tell you that each subsequent term is made by multiplying the digits of the number i.e. 77 is followed by $7 \times 7 = 49$ which is followed by $4 \times 9 = 36$ and that leads us to the next number being $3 \times 6 = 18$.

7. (c)

Let the cost price of article is CP

When 20% discount is given, SP becomes 80% of CP which is ₹24.

80% of CP = 24

$$\frac{80}{100}CP = 24$$

$$\frac{4}{5}CP = 24$$

$$CP = 24 \times \frac{5}{4} = 30$$

Now if 30% discount is given SP becomes 70% of CP

New selling price =
$$\frac{70}{100}$$
 × 30 = ₹21

8. (d)

Using conventional approach, we can say that if all 3 pipes are opened simultaneously, in one hour they will fill up $\frac{1}{10} + \frac{1}{15} + \frac{1}{18} = \frac{9+6+5}{90} = \frac{20}{90} = 2/9^{th}$ of the vessel . This leads to the entire vessel getting filled up in $\frac{9}{2}$ hours or 270 minutes . Time required to fill up 60% of the vessel will

9. (d)

In this coding language, the letters are written such that one letter from right end followed by one letter from left end.

10. (d)

$$95 + 20.5 = 115.5$$

 $115.5 + 22.5 = 138$
 $138 + 24.5 = 162.5$
 $162.5 + 26.5 = 189$

be $270 \times 60\% = 162$ minutes.

11. (b)

The series will be of the form: 101, 104, 107.....995, 998.

It will have a total of 300 terms (999 – 100 + 1 = 900. Take $\frac{1}{3}$ of this, since only 1 term is there in every 3)

Now,

$$Sum = \frac{(1^{st} \text{ number} + n^{th} \text{ number}) \times n}{2}$$

$$= \frac{(101 + 998) \times 300}{2}$$

$$= \frac{1099 \times 300}{2}$$

$$= 164,850$$

12. (d)

There are a total of 18 shirts: 8 blue and 10 non blue.

P (selecting at least 1 blue shirt) = 1 - P (selecting no blue shirts)

Assuming no replacement

$$P$$
 (selecting first non-blue shirt) = $\frac{10}{18}$

$$P$$
 (selecting second non-blue shirt) = $\frac{9}{17}$

P (selecting no blue shirts) =
$$\frac{10}{18} \times \frac{9}{17} = \frac{10}{34}$$

$$\therefore$$
 P (selecting at least 1 blue shirt) = $1 - \left(\frac{10}{34}\right) = \frac{24}{34} = \frac{12}{17}$

13. (a)

$$Milk = m litres;$$

Water =
$$w$$
 litres;

Cost of
$$(m + w)$$
 litres = 6.4 m ;

Selling price of (m + w) litres = 8 (m + w).

Given that 6.4
$$m \times 1.375 = 8 (m + w) \Rightarrow \frac{w}{m} = \frac{1}{10}$$
.

14. (b)

Since the two semi circles are congruent, they intersect at the top of the arc. We can divide this into 3 regions

I. A quarter circle with radius 2 (Area =
$$\frac{\pi \times 2 \times 2}{4} = \pi$$
)

II. A square with side 2 (Area =
$$2 \times 2 = 4$$
)

III. Another quarter circle with radius 2 (Area =
$$\frac{x \times 2 \times 2}{4} = \pi$$
)

$$Total = 4 \times 4 = 16$$

:. Shaded Area =
$$16 - \pi - 4 - \pi = 12 - 2\pi$$

15. (d)

Let the weight of 24% solution used be x grams, weight of alcohol in it would be 0.24x.

As in final solution strength decreased by $\frac{1}{3}$ thus it became $24 \times \frac{2}{3} = 16\%$.

Set the equation : 0.24x = 0.16 (x + 200), the weight of 16% alcohol in (x + 200) grams of new solution comes only from (equal to) 24% alcohol in x grams of strong (initial) solution, as there is 0 grams of alcohol in water (0% alcohol solution)

$$\Rightarrow$$

$$0.08x = 32$$

$$\Rightarrow$$

$$x = 400$$

16. (d)

Option (d) i.e. 'stalking' here refers to a silent approach of the lioness towards the 3 month old kid. She straight away walked up to the kind once the kid started crying (bleating) giving up all caution.

17. (b)

The sequence of programs based on channels is C7-C3-C4-C6

Since neither C7 nor C3 telecasts on MON, the only channel left is C5 which telecasts a program on MON.

P1 is followed by P6 and C4 telecasts neither P1 nor P6 implies that C4 telecasts P4 and the days for C7-C3-C4-C6 are Wed/THU/FRI/SAT.

18. (c)

Lets assume

$$|x-2|=m$$

Now

$$m^2 + m - 2 = 0$$

$$\Rightarrow \qquad (m-1)(m+2) = 0$$

only admissible value is m = 1

$$(: m = -2 \text{ as } m \ge 0)$$

 \Rightarrow

$$|x-2|=1$$

Now

$$x = 3, 1$$

Now sum of real roots = 3 + 1 = 4

19. (b)

Given, $3^a = 4$, means $4^b = (3^a)^b = 3^{ab}$; likewise keep replacing successive values.

We will end up getting $3^{abcdef} = 9 = 3^2$ or abcdef = 2.

20. (b)

The angle traversed by hour hand

$$= 6 \times 30^{\circ} + 15^{\circ} = 195^{\circ}$$

The angle traversed by minute hand

$$= 6 \times 360^{\circ} + 180^{\circ} = 2340^{\circ}$$

Ratio =
$$\frac{2340}{195}$$
 = 12

21. (c)

Let the total number of voter = x

Among these voters $\frac{4x}{5}$ wants to vote for person A and $\frac{x}{5}$ wants to vote for person B.

On election days,

Total number of voters who vote for person $A = \frac{4x}{5} \times 0.9 = \frac{3.6x}{5}$

Total number of voters who vote for person is $=\frac{x}{5} \times 0.8 = \frac{0.8x}{5}$

$$\frac{3.6x}{5} = 216$$

$$x = 300$$

So, on election day total number of votes polled

$$= \frac{3.6x}{5} + \frac{0.8x}{5}$$
$$= \frac{3.6 \times 300}{5} + \frac{0.8 \times 300}{5} = 216 + 48 = 264$$

22. (c)

When the grapes become dry, then the weight of their water part gets reduced, but weight of other parts remains the same.

Let the weight of dry grapes is x kg.

then

$$20 \times 0.1 = x \times 0.8$$

$$x = \frac{2}{0.8}$$

$$x = 2.5 \text{ kg}$$

23. (c)

Let the length of the middle sized piece is x cm.

Then, length of largest piece = 3x cm

Length of shortest piece = (3x - 46)cm

$$\Rightarrow \qquad 3x + x + 3x - 46 = 80$$

$$\Rightarrow$$
 $7x = 126$

$$\Rightarrow$$
 $x = 18$

Length of the shortest piece = 3x - 46

$$= 54 - 46 = 8 \text{ cm}$$

24. (c)

Initial height = 120 m

Total distance

$$= 120 + 2 \times \left[120 \times \frac{4}{5} + 120 \times \left(\frac{4}{5} \right)^2 + 120 \times \left(\frac{4}{5} \right)^3 \dots \right]$$

$$= 120 + 2 \times 120 \times \frac{4}{5} \left[1 + \left(\frac{4}{5} \right) + \left(\frac{4}{5} \right)^2 + \dots \right]$$

$$= 120 + 192 \times \frac{1}{1 - \frac{4}{5}} = 120 + 192 \times 5 = 1080 \text{ meters}$$

25. (b)

$$\log_{10}^{\sqrt{x}} = \frac{1}{2}\log_{10}^{x}$$

:. The equation becomes,

$$\log_{10}^{x} - \frac{1}{2}\log_{10}^{x} = 2\log_{x}^{10}$$

$$\Rightarrow \qquad \frac{1}{2}\log_{10}^{x} = \frac{2}{\log_{10}^{x}}$$

$$\Rightarrow \qquad (\log_{10}^{x})^{2} = 4$$

$$\Rightarrow \qquad \log_{10}^{x} = 2 \text{ or } \log_{10}^{x} = -2$$

$$\Rightarrow \qquad x = 100 \text{ or } x = \frac{1}{100}$$

From the given options *x* can taken the only value equal to 100.

26. (d)

Let equal sides of the isosceles triangle be x,

$$x^2 + x^2 = 10^2$$

$$x = 5\sqrt{2} \text{ cm}$$

So,
Final area =
$$8 \times \left(\frac{1}{8} \times \pi \times 10^2 - \frac{1}{2} 5\sqrt{2} \times 5\sqrt{2}\right)$$

= $\pi \times 10^2 - 4 \times 25 \times 2$
= $100\pi - 200$
Area = 114.16 cm^2

27. (b)

We note that there are 3 consonants M, C and T and 3 vowels E, A and O. Since no two vowels have to be together the possible choice for vowels are the places marked as 'X'.

XMXCXTX,

These vowels can arranged in 4P_3 ways and 3 consonants can be arranged in 3! ways. Hence, the required number of ways = $3! \times {}^4P_3$

$$= 3! \times \frac{4!}{1!} = 144$$

$$\frac{2.32^{3} + 1.44^{3} + 2.88^{3} - 3 \times 2.32 \times 1.44 \times 2.88}{2.32^{2} + 1.44^{2} + 4 \times 1.44^{2} - 2 \times 1.44^{2} - 2.32 \times 1.44 - 2.32 \times 2.88}$$
$$\frac{2.32^{3} + 1.44^{3} + 2.88^{3} - 3 \times 2.32 \times 1.44 \times 2.88}{2.32^{2} + 1.44^{2} + 2.88^{2} - 2.88 \times 1.44 - 2.32 \times 1.44 - 2.32 \times 2.88}$$
$$\Rightarrow \frac{a^{3} + b^{3} + c^{3} - 3abc}{a^{2} + b^{2} + c^{2} - ab - bc - ca} = a + b + c$$
$$2.32 + 1.44 + 2.88 = 6.64$$

29. (a)

$$man \times day = 40 \times 400 = 16000$$

Day = 40 days

After 32 days
$$\Rightarrow$$

$$32 \times 400 = 12800$$

So,

Remaining, man
$$\times$$
 day = 3200

:.

$$80 \times Day = 3200$$

30. (c)

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha \beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha \beta} = \frac{(\alpha + \beta)^2}{\alpha \beta} - 2$$

$$(12/8)^2 \qquad 144 \qquad 18$$

$$= \frac{(12/8)^2}{a/8} - 2 = \frac{144}{8a} - 2 = \frac{18}{a} - 2$$

Minimum value = -2 (When $a \rightarrow \infty$)