

DETAILED EXPLANATIONS

1. (d)
2. (a)

$$
\begin{array}{rll}
1 \mathrm{~cm}=75 \mathrm{~m} & \Rightarrow & \text { Scale }=\frac{1}{7500} \\
1: 35000 & \Rightarrow & \text { Scale }=\frac{1}{35000} \\
\mathrm{RF}=\frac{1}{250000} & \Rightarrow & \text { Scale }=\frac{1}{250000} \\
1 \mathrm{~cm}=50 \mathrm{~km} & \Rightarrow & \text { Scale }=\frac{1}{50 \times 10^{3} \times 10^{2}}=\frac{1}{5000000}
\end{array}
$$

$\therefore \quad$ Largest scale is $1 \mathrm{~cm}=75 \mathrm{~m}$
3. (c)

$$
\begin{aligned}
\text { True length of line } & =\frac{l^{\prime}}{20} \times 253 \\
\Rightarrow \quad l^{\prime} & =\frac{250 \times 20}{253}=19.76 \mathrm{~m}
\end{aligned}
$$

4. (c)

5. (a)
6. (c)

For a well conditioned triangle interior angle $\geq 30^{\circ}$ and $\leq 120^{\circ}$
\therefore Triangles 3 and 4 are not well conditioned triangles.
7. (a)

Let height of light house be ' H '

$$
\begin{aligned}
\therefore \quad H & =0.0673 \times d^{2} \\
& =0.0673 \times(50)^{2} \\
& =168.25 \mathrm{~m}
\end{aligned}
$$

8. (a)
9. (c)

RL of bottom of bridge $=102.205+1.44+1.825$

$$
=105.47 \mathrm{~m}
$$

10. (d)
11. (b)

$$
\begin{aligned}
V & =h\left[\frac{A_{1}+A_{n}}{2}+A_{2}+A_{3}+A_{4}\right] \\
& =5\left[\frac{20+1100}{2}+100+400+900\right] \times 10^{4} \\
& =9800 \times 10^{4} \mathrm{~m}^{3} \\
& =9800 \mathrm{ha}-\mathrm{m}
\end{aligned}
$$

12. (a)

$$
\begin{array}{ll}
\because & A=\frac{\pi D^{2}}{4} \\
\therefore & d A=\frac{\pi}{4} \times 2 D \times d D \\
\Rightarrow & d A=\frac{\pi}{2} \times D \times 0.05= \pm 9.42 \mathrm{~m}^{2}
\end{array}
$$

13. (a)

Number of full chord $=\frac{1435}{20}=71.75 \simeq 71$
Length of last chord $=(1435-71 \times 20)=1435-1420=15 \mathrm{~m}$
Now, offset for last chord

$$
\mathrm{O}_{\mathrm{n}}=\frac{C_{n}}{2 R}\left(C_{n}+C_{n-1}\right)
$$

$$
\begin{aligned}
\mathrm{O}_{72} & =\frac{15}{2 \times 400}(15+20)=0.656 \\
& \simeq 0.66 \mathrm{~m}
\end{aligned}
$$

14. (d)

$$
\begin{aligned}
\qquad & h \\
& =\frac{\left(h_{B}-h_{A}\right)+\left(h_{B}^{\prime}-h_{A}^{\prime}\right)}{2} \\
& =\frac{(1.235-0.845)+(2.675-1.425)}{2} \\
& =0.82 \mathrm{~m} \\
\because \quad \text { Staff reading at } B & >\text { Staff reading at } A \\
\therefore \quad \text { RL of } B & =\text { RL of } A-h \\
& =100.21-0.82=99.39 \\
\therefore \quad B \text { is lower than } A . &
\end{aligned}
$$

15. (d)

Displacement due to angular error on ground $=l \sin \alpha=15 \sin \alpha$
Displacement due to linear error on ground $=\frac{l}{r}=\frac{15}{20}=0.75$

Combined error on ground $=\sqrt{(15 \sin \alpha)^{2}+(0.75)^{2}}$

Combined error in plotting on plan $=\frac{1}{30} \sqrt{(15 \sin \alpha)^{2}+(0.75)^{2}}$

Hence,

$$
\frac{1}{30} \sqrt{(15 \sin \alpha)^{2}+(0.75)^{2}}=0.025
$$

$\Rightarrow \quad \alpha=0^{\circ}$
So, no angular error can be permitted.
16. (d)

Sensitivity of bubble tube is given by,

$$
\begin{aligned}
\alpha^{\prime} & =\frac{S}{n D} \times\left(\frac{360^{\circ}}{2 \pi} \times 60 \times 60\right) \\
& =24 \text { seconds (given) } \\
S & =? \quad \text { (staff intercept) } \\
n & =2 \text { division, and } \\
D & =\text { Distance of the staff from level }=110 \mathrm{~m} \\
\therefore \quad 24 & =\frac{S}{2 \times 110}\left(\frac{360}{2 \pi} \times 60 \times 60\right)=\frac{S}{2 \times 110} \times 206265
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad S & =\frac{24 \times 2 \times 110}{206265}=25.599 \times 10^{-3} \mathrm{~m} \\
& \simeq 25.59 \mathrm{~mm}
\end{aligned}
$$

17. (a)

In a closed traverse with no local attraction,

$$
F B-B B=180^{\circ}
$$

Since station ' X ' is free from local attraction and therefore $\mathrm{FB}_{X Y}$ and $\mathrm{BB}_{Z Y}$ are correct.

$$
\therefore \quad F B_{X Y}=35^{\circ} \text { and } B B_{X Y}=216^{\circ}
$$

But $\quad B B_{X Y}-F B_{X Y}=216-35^{\circ}=181^{\circ} \neq 180^{\circ}$
\therefore A correction of -1° is to be applied at station Y,

$$
\begin{array}{lc}
\therefore & F B_{Y Z}=116^{\circ}-1^{\circ}=115^{\circ} \\
\text { But } & B B_{Y Z}-F B_{Y Z}=293^{\circ}-115^{\circ}=178^{\circ} \neq 180^{\circ}
\end{array}
$$

$\therefore \quad$ A correction of $+2^{\circ}$ is to be applied at Z
$\therefore \quad$ The correct $F B$ of $Z Y=293^{\circ}+2^{\circ}=295^{\circ}$
18. (c)

Let O be the instrument station and A be the staff station.

$$
V=3000 \tan 2^{\circ} 30^{\prime}=130.98 \mathrm{~m}
$$

Since, distance of 3000 m is quite large,
\therefore Combined correction for curvature and refraction,

$$
\begin{aligned}
C_{\infty} & =-0.0673 D^{2} \\
& =-0.0673\left(\frac{3000}{1000}\right)^{2} \\
& =0.6057 \mathrm{~m}
\end{aligned}
$$

Hence, RL of staff station A

$$
\begin{aligned}
& =R L \text { of } \mathrm{O}+\text { H.I. }+V-3+C_{c o} \\
& =R L \text { of instrument axis }+V-3+C_{c o} \\
& =200+130.98-3-0.6057 \\
& =327.37 \mathrm{~m}
\end{aligned}
$$

19. (b)

Let the vertical angle be θ.
True horizontal distance, $D=k S \cos ^{2} \theta$
Sloping distance, $\quad L=k S$

$$
\frac{\text { Sloping distance }}{\text { Horizontal distance }}=\frac{k S}{k S \cos ^{2} \theta}=\sec ^{2} \theta
$$

Permissible error is 1 in 300

Hence,

$$
\frac{L}{D}=\frac{300+1}{300}=\frac{301}{300}
$$

$$
\begin{array}{ll}
\therefore & \sec ^{2} \theta=\frac{301}{300} \\
\Rightarrow & \theta=3^{\circ} 18^{\prime} 15^{\prime \prime}
\end{array}
$$

20. (d)

$$
\begin{aligned}
\text { True bearing } & =\text { Magnetic bearing }- \text { Declination (west) } \\
& =320^{\circ} 30^{\prime}-3^{\circ} 30^{\prime}=317^{\circ} 0^{\prime}
\end{aligned}
$$

The true bearing of a line is constant,
So the present true bearing of line is also $317^{\circ} 0^{\prime}$.
\therefore Present magnetic bearing $=$ True bearing - Declination (East)

$$
=317^{\circ} 0^{\prime}-4^{\circ} 15^{\prime}=312^{\circ} 45^{\prime}
$$

21. (c)

In $\triangle P R S$,

$$
\begin{align*}
& \tan 10^{\circ} 40^{\prime}=\frac{x}{1700+D} \\
& \Rightarrow \quad x-0.188 \mathrm{D}=320.194 \tag{1}
\end{align*}
$$

In $\triangle Q R S, \quad \tan 14^{\circ} 20^{\prime}=\frac{x}{D}$
$\Rightarrow \quad x-0.256 D=0$
From (1) and (2) $\quad x=1205.44 \mathrm{~m}$ and $D=4708.74 \mathrm{~m}$
$\therefore \quad$ Elevation of top of hill $=x+h$

$$
=1205.44+436.50=1641.94 \mathrm{~m}
$$

22. (b)
19.5 cm on the map was originally 20 cm ,
$\therefore \quad 1 \mathrm{~cm}^{2}$ on the map was originally $\frac{20^{2}}{19.5^{2}} \mathrm{~cm}^{2}$
$\Rightarrow \quad 125.50 \mathrm{~cm}^{2}$ was originally $\frac{20^{2}}{19.5^{2}} \times 125.50=132.0184 \mathrm{~cm}^{2}$
$\because \quad$ Scale of map was $1 \mathrm{~cm}=40 \mathrm{~m}$
$\Rightarrow \quad 1 \mathrm{~cm}^{2}=1600 \mathrm{~m}^{2}$
$\Rightarrow \quad$ Area on the ground $=1600 \times 132.0184$

$$
=211,229.44 \mathrm{~m}^{2}
$$

Since the chain was 0.05 m too long.

$$
\therefore \quad \text { True area }=\frac{20.05^{2}}{20^{2}} \times \frac{211229.44}{10^{4}}=21.23 \text { hectares }
$$

23. (d)

Let $S_{1} S_{3}=l_{1}$ and $S_{2} S_{3}=l_{2}$
Northing of S_{3} :

$$
\begin{align*}
600+l_{1} \cos 35^{\circ} & =550+l_{2} \cos 30^{\circ} \\
l_{1} \cos 35^{\circ}-l_{2} \cos 30^{\circ} & =-50 \tag{1}
\end{align*}
$$

Easting of S_{3} :

$$
\begin{equation*}
400+l_{1} \sin 35^{\circ}=500-l_{2} \sin 30^{\circ} \tag{2}
\end{equation*}
$$

$\Rightarrow \quad l_{1} \sin 35^{\circ}+l_{2} \sin 30^{\circ}=100$
Solving (1) and (2)

$$
\begin{aligned}
l_{1} & =67.97 \mathrm{~m} \\
l_{2} & =122.03 \mathrm{~m} \\
\therefore \quad \text { Easting of } S_{3} & =400+67.97 \sin 35^{\circ}=438.986 \mathrm{~m}
\end{aligned}
$$

24. (c)

Length of long chord,

$$
T_{1} T_{2}=2 R \sin \left(\frac{\Delta}{2}\right)=2 \times 500 \times \sin \left(\frac{60^{\circ}}{2}\right)=500 \mathrm{~m}
$$

Length of mid ordinate,

$$
M=R\left[1-\cos \frac{\Delta}{2}\right]
$$

$$
\begin{aligned}
& =500\left[1-\cos \left(\frac{60}{2}\right)\right]=66.987 \mathrm{~m} \\
\therefore \quad\left(T_{1} T_{2}-M\right) & =500-66.987 \\
& =433.013 \mathrm{~m} \simeq 433.01 \mathrm{~m}
\end{aligned}
$$

25. (a)

$$
\text { Mean area } \begin{aligned}
\left(A_{m}\right) & =\left(\frac{20+10}{2}\right) \times\left(\frac{5+2}{2}\right) \\
& =15 \times 3.5=52.5 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\text { Top area }\left(A_{1}\right)=20 \times 5=100 \mathrm{~m}^{2}
$$

$$
\text { Bottom area }\left(A_{2}\right)=10 \times 2=20 \mathrm{~m}^{2}
$$

\therefore Using prismoidal formula,

$$
\text { Volume, } \begin{aligned}
V & =\frac{L}{3}\left(A_{1}+4 A_{m}+A_{2}\right) \\
V & =\frac{1.5}{3}(100+4 \times 52.5+20) \\
& =165 \mathrm{~m}^{3}
\end{aligned}
$$

26. (b)

$$
\begin{aligned}
D & =K S+C \\
S & =2.780-1.646=1.134 \mathrm{~m} \\
D & =100 \times 1.134+0.6 \\
& =114 \mathrm{~m}
\end{aligned}
$$

27. (c)

$$
\begin{aligned}
h & =1500 \mathrm{~m} \\
\text { Scale } & =1: 8500 \\
f & =20 \mathrm{~cm} \\
\text { Scale } & =\frac{f}{H-h}
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{1}{8500}=\frac{20 \times 10^{-2}}{H-1500} \\
\Rightarrow & H=3200 \mathrm{~m} \\
\Rightarrow & \mathrm{H}=3.2 \mathrm{~km}
\end{array}
$$

28. (b)

$$
\begin{array}{ll}
& \mathrm{HI}=\mathrm{RL}+\mathrm{BS} \\
\text { and } & \mathrm{RL}=\mathrm{HI}-\mathrm{BS}
\end{array}
$$

Staff station	BS $\mathbf{(m)}$	IS $\mathbf{(m)}$	FS $\mathbf{(m)}$	HI $\mathbf{(m)}$	RL $\mathbf{(m)}$
A	1.545	-		101.545	100
B	-0.860	-	-1.420	102.105	102.965
C	-	-	0.835	-	101.27

$$
\therefore \quad \text { RL of } C=101.27 \mathrm{~m}
$$

29. (c)

Horizontal distance is given as

$$
\begin{aligned}
D & =k s+C \\
\text { Multiplying constant, } k & =\frac{f}{i} \\
\text { Focal length, } f & =20 \mathrm{~cm} \\
i & =\text { Spacing between outer lines of diaphragm axis }=4 \mathrm{~mm} \\
\qquad \quad k & =\frac{20 \times 10 \mathrm{~mm}}{4 \mathrm{~mm}}=50 \\
\therefore \quad \text { Staff intercept, } s & =2(2.5-1.0) \\
& =3 \mathrm{~m} \\
\text { Additive constant, } C & =(f+d) \\
& =20 \mathrm{~cm}+10 \mathrm{~cm}=0.3 \mathrm{~m} \\
\text { Hence, } \quad D & =50 \times 3+0.3 \\
& =150.3 \mathrm{~m}
\end{aligned}
$$

30. (b)

Since subtense theodolite is used, this is a case of movable-hair stadia method of tacheometry. In this case, the distance between instrument and the staff is given as

$$
D=\frac{C \times S}{n}+(f+d)
$$

$$
\text { where, } \begin{aligned}
C & =\text { Theodolite constant i.e. } 600 \\
S & =\text { Staff intercept (distance between targets) }=3 \mathrm{~m} \\
n & =\text { Sum of the readings in the micrometer } \\
& =(3.455+3.405) \mathrm{m}=6.86 \mathrm{~m} \\
(f+d) & =0.5 \\
\text { Hence, } \quad D & =\frac{600 \times 3}{6.86}+0.5=262.89 \mathrm{~m}
\end{aligned}
$$

