

MADE EASY

India's Best Institute for IES, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

SOIL MECHANICS

CIVIL ENGINEERING

Date of Test: 22/07/2024

ANSWER KEY >

1.	(a)	7.	(d)	13.	(c)	19.	(c)	25.	(a)
2.	(c)	8.	(c)	14.	(d)	20.	(b)	26.	(d)
3.	(a)	9.	(c)	15.	(a)	21.	(a)	27.	(c)
4.	(b)	10.	(c)	16.	(a)	22.	(a)	28.	(c)
5.	(d)	11.	(d)	17.	(c)	23.	(d)	29.	(b)
6.	(a)	12.	(b)	18.	(d)	24.	(c)	30.	(a)

DETAILED EXPLANATIONS

1. (a)

Equivalent permeability, $k_{eq} = \sqrt{k_x \times k_z} = \sqrt{32 \times 8} = 16 \text{ units}$

- 2. (c)
- 3. (a)
- 4. (b)

Area radio,
$$A_r = \frac{D_0^2 - D_i^2}{D_i^2} = \frac{50^2 - 40^2}{40^2} = 0.5625 \text{ or } 56.25\% \simeq 56\%$$

5. (d)

$$\frac{\Delta H}{H} = \frac{\Delta e}{1 + e_o}$$

$$\Rightarrow \frac{26 - 24}{26} = \frac{\Delta e}{1 + 1.22}$$

$$\Rightarrow \Delta e = 0.171$$

$$\Rightarrow e_i - e_f = \Delta e$$

$$\Rightarrow e_f = 1.22 - 0.171 = 1.05$$

6. (a)

Toughness index,
$$I_t = \frac{I_p}{I_f} = \frac{4 \times I_f}{I_f} = 4$$

7. (d)

The effect of overburden pressure on SPT value may be approximated by the equation.

$$N = N' \left(\frac{350}{\overline{\sigma} + 70} \right)$$

 $\overline{\sigma}$ = Effective overburden pressure at test level = $18 \times 6 = 108 \text{ kN/m}^2 \not > 280 \text{ kN/m}^2$ (OK)

$$N = 28 \times \left(\frac{350}{108 + 70}\right) = 55$$

8. (c)

$$B = \frac{\Delta U_3}{\Delta \sigma_3} = \frac{0.19 - 0.09}{0.3 - 0.1} = \frac{0.1}{0.2} = 0.5$$

9. (c)

As per Taylor's method,

Stability number,
$$S_n = \frac{C}{F_C \gamma H}$$

$$\Rightarrow S_n = \frac{C}{\gamma H_C}$$
 (: $F_C = 1$ for critical height)
$$\Rightarrow H_C = \frac{C}{\gamma S_n}$$

$$= \frac{30}{24 \times 0.05} = 25 \,\text{m}$$

10. (c)

Tap water contains a considerable amount of air. During permeability test, this air gets struck and remains trapped between sand grains thereby lowering the permeability.

11. (d)

Factor of safety
$$F = \left(1 - \frac{\gamma_w h}{\gamma_{avg} z}\right) \frac{\tan \phi}{\tan \beta}$$

$$\gamma_{avg} = \frac{20 \times 5 + 15 \times 5}{10} = 17.5 \text{ kN/m}^3$$

$$F = \left(1 - \frac{10 \times 5}{17.5 \times 10}\right) \times \frac{\tan 45^\circ}{\tan 30^\circ} = \frac{5\sqrt{3}}{7} = 1.24$$

12. (b)

:.

$$I_{\rm D} = \frac{e_{\rm max} - e}{e_{\rm max} - e_{\rm min}} \times 100 = \frac{0.75 - 0.5}{0.75 - 0.25} \times 100$$

$$= 50\%$$

$$I_{\rm D} \qquad \qquad \text{Classification}$$

$$<15 \qquad \qquad \text{Very loose}$$

$$15 - 35 \qquad \qquad \text{Loose}$$

$$35 - 65 \qquad \qquad \text{Medium dense}$$

$$65 - 85 \qquad \qquad \text{Dense}$$

$$>85 \qquad \qquad \text{Very dense}$$

13. (c)

Shrinkage limit, $W_s = w_1 - \Delta w$ $= w_1 - \frac{\Delta V \cdot \rho_w}{M_S}$ $= \frac{M_1 - M_d}{M_d} - \frac{(V_1 - V_d)\rho_w}{M_d}$ $= \frac{55.4 - 39.8}{39.8} - \frac{(29.2 - 21.1) \times 1}{39.8}$ = 0.39 - 0.20 = 0.19 = 19%

Also,

Weight of dry soil =
$$450 - 9 = 441 \text{ gm}$$

Volume of paraffin = $\frac{9}{0.9} = 10 \text{ cc}$
Volume of soil = $295 - 10 = 285 \text{ cc}$
Dry density, $\gamma_d = \frac{441}{285} = 1.547 \text{ gm/cc}$

$$\gamma_d = \frac{G\gamma_w}{1+e} = \frac{2.65 \times 1}{1+e} = 1.547$$

$$e = 0.713$$

15. (a)

16. (a)

Adhesion factor, a = 0.5.

Let L_1 and L_2 be the depths of embedment of pile in top both layers, respectively. Then,

$$Q_{a} = \frac{Q_{u}}{FOS}$$

$$Q_{u} = Q_{a} \times FOS = 380 \times 2 = 760 \text{ kN}$$
Also,
$$Q_{u} = \alpha(C_{u_{1}})\pi dL_{1} + \alpha(C_{u_{2}})\pi dL_{2} + +(C_{u_{1}})N_{C}\frac{\pi d^{2}}{4}$$

$$760 = 0.5 \times 45 \times \pi \times 0.4 \times 5 + 0.5 \times 100 \times \pi \times 0.4 \times L_{2} + 100 \times 9 \times \frac{\pi \times 0.4^{2}}{4}$$

$$760 = 254.5 + 62.8 \times L_{2}$$

$$L_{2} = \frac{760 - 254.8}{62.8} = 8 \text{ m}$$

Therefore, the length of the pile is as given below,

$$L_1 + L_2 = 5 + 8 = 13 \text{ m}$$

$$K_{p_1} = \frac{1+\sin 30^\circ}{1-\sin 30^\circ} = 3$$

$$K_{p_2} = \frac{1+\sin 15^\circ}{1-\sin 15^\circ} = 1.698$$
 At $h=0$ m,
$$p_1 = K_{p_1}q = 3\times 20 = 60 \text{ kN/m}^2$$
 At $h=4$ m, in top layer $p_2 = K_{p_1} (q+\gamma_1 h) = 3(20+4\times 16) = 252 \text{ kN/m}^2$ At $h=4$ m, in bottom layer,

$$p_3 = K_{P_2}(q + \gamma_1 h) + 2C\sqrt{K_{P_2}}$$

$$= 1.698(20 + 16 \times 4) + 2 \times 15\sqrt{1.698}$$

$$= 181.72 \text{ kN/m}^2$$

At h = 8 m i.e., at point A,

$$p_4 = K_{P_2}(q + \gamma_1 \times 4 + \gamma_2 \times 4) + 2C\sqrt{K_{P_2}}$$

$$= 1.698(20 + 16 \times 4 + 18 \times 4) + 2 \times 15\sqrt{1.698}$$

$$= 303.98 \text{ kN/m}^2$$

At h = 0 m,

18. (d)

$$\sigma_z = \frac{3Q}{2\pi z^2} \left(\frac{1}{1 + \left(\frac{r}{z}\right)^2} \right)^{5/2}$$

For stress vertically below the load, r = 0

$$\therefore \qquad \qquad \sigma_z = \frac{3Q}{2\pi z^2}$$

$$\therefore \frac{\sigma_{2m}}{\sigma_{5m}} = \frac{\frac{1}{2^2}}{\frac{1}{5^2}} = 6.25$$

19. (c)

For strip footing,

$$\begin{aligned} q_u &= cN_C + qN_q + 0.5 \,\gamma \,BN_\gamma \\ &= 50 \times 8 + 20 \times 1 \times 3 + 0.5 \times 20 \times 2 \times 2 \\ &= 500 \,\text{kN/m}^2 \end{aligned}$$

$$q_{nu} = q_u - \gamma D_f = 500 - 20 \times 1 = 480 \text{ kN/m}^2$$

:. Safe bearing capacity,

$$q_s = q_{ns} + \gamma D_f$$

= $\frac{480}{3} + 20 \times 1 = 160 + 20$
= 180 kN/m^2

$$\therefore Total safe load = 180 \times 2 \times 10$$
$$= 3600 kN$$

20. (b)

Ultimate pull =
$$\alpha \overline{C}A_s + W_P$$

= $0.5 \times 120 \times (\pi \times 0.5 \times 12) + \frac{\pi}{4} \times 0.5^2 \times 12 \times 25$
= 1189.88 kN

21. (a)

Let k, 10k and 20k be the permeabilities of first, second and third soil layers respectively. Let t, t/2 and 2t be the thicknesses of the first, second and third soil layers respectively.

$$k_h = \frac{k_1 z_1 + k_2 z_2 + k_3 z_3}{z_1 + z_2 + z_3}$$

$$= \frac{kt + 10k \cdot \left(\frac{t}{2}\right) + 20k \cdot 2t}{t + \frac{t}{2} + 2t}$$

$$= \frac{kt \left(1 + 5 + 40\right)}{t \left(1 + 0.5 + 2\right)} = \frac{46k}{3.5} = 13.143k$$
Also,
$$k_v = \frac{z_1 + z_2 + z_3}{\left(\frac{z_1}{k_1}\right) + \left(\frac{z_2}{k_2}\right) + \left(\frac{z_3}{k_3}\right)}$$

$$= \frac{t + \frac{t}{2} + 2t}{\left(\frac{t}{k}\right) + \left(\frac{t/2}{10k}\right) + \left(\frac{2t}{20k}\right)}$$

$$= \frac{t(1 + 0.5 + 2)}{\frac{t}{k}\left(1 + \frac{1}{20} + \frac{1}{10}\right)} = 3.043 \text{ k}$$

$$\frac{k_h}{k_v} = \frac{13.143k}{3.043k} = 4.32$$

22. (a)

:.

Load carrying capacity of each pile = $C_u N_C A_b + \alpha \overline{C}_u A_s$

For stiff clay,
$$C_u = \frac{Q_{undisturbed}}{2} = \frac{250}{2} = 125 \text{ kPa}$$

For medium stiff clay, $\overline{C}_u = \frac{200}{2} = 100 \text{ kPa}$

Load carrying capacity of each pile

=
$$9 \times 125 \times \frac{\pi}{4} \times (0.3)^2 + 0.6 \times 100 \times \pi \times (0.3) \times 20$$

= $79.52 + 1130.97$
= 1210.49 kN
 $\approx 1210.5 \text{ kN}$

Load carrying capacity of 9 piles = $9 \times (load carrying capacity of one pile)$ = 10894.5 kN

Ultimate load carrying capacity of pile group = 3 × 3800 = 11400 kN

Efficiency of pile group =
$$\frac{11400}{10894.5} \times 100 = 104.64\%$$

23. (d)

Given, seepage head,
$$h = 1.68$$
 m
Factor of safety, $F = 1.5$
Specific gravity, $G = 2.67$
Porosity, $n = 40\%$

Void ratio,
$$e = \frac{n}{1-n} = \frac{0.40}{1-0.40} = 0.67$$

Critical hydraulic gradient,

$$i_c = \frac{G-1}{1+e} = \frac{2.67-1}{1+0.67} = 1$$

Actual exit hydraulic gradient,

$$i = \frac{i_c}{F} = \frac{1}{1.5} = 0.67$$

$$i = \frac{h}{I}$$

But

$$L = \frac{h}{i} = \frac{1.68}{0.67} = 2.51 \text{ m}$$

$$\therefore$$
 Depth of coarse sand required = $L - 1.5$

24. (c)

Since it is a case of double drainage and thus, $d = \frac{4}{2} = 2$ m = 200 cm

For,
$$U = 70\%$$
 of total settlement $T_v = -0.9332 \log_{10} (1 - U) - 0.0851$

$$= -0.9332 \log_{10}(1 - 0.7) - 0.0851$$

$$= 0.403$$

$$C_v = \frac{T_v d^2}{t}$$

$$\Rightarrow \qquad \qquad t = \frac{0.403 \times (200)^2}{0.03}$$

$$\Rightarrow \qquad \qquad t = 537.33 \times 10^3 \,\text{min}$$

$$\Rightarrow \qquad \qquad t = 373 \text{ days}$$

25. (a)

The increased stress, $\bar{\sigma}_0 + \Delta \bar{\sigma}$ is equal to 70 + 80 = 150 kN/m². This is greater then $\bar{\sigma}_c = 120 \text{ kN/m}^2$. Thus soil is normally consolidated.

$$s_c = C_r \frac{H_0}{1 + e_0} \log \frac{\overline{\sigma}_c}{\sigma} + C_C \frac{H_0}{1 + e_0} \log_{10} \frac{\overline{\sigma}_0 + \Delta \overline{\sigma}_c}{\overline{\sigma}_c}$$

$$s_c = 0.03 \frac{5 \times 10^3}{1 + 0.90} \log \frac{120}{70} + 0.27 \frac{5 \times 10^3}{1 + 0.90} \log_{10} \frac{150}{120}$$

= 18.48 + 68.86 = 87.34 mm

$$\sigma_z = \frac{2q'}{\pi z} \left[\frac{1}{1 + \left(\frac{x}{z}\right)^2} \right]^2$$

$$= \frac{2 \times 120}{\pi \times 3.5} \left[\frac{1}{1 + \left(\frac{2}{3.5}\right)^2} \right]^2$$

$$= 12.40 \text{ kN/m}^2$$

27. (c)

Given:
$$B_f = 1.5 \text{ m}, B_p = 0.3 \text{ m}, S_p = 18 \text{ mm}, S_f = ?$$

$$\frac{S_f}{S_p} = \left[\frac{B_f}{B_p} \frac{\left(B_p + 0.3\right)}{\left(B_f + 0.3\right)} \right]^2$$

$$\Rightarrow \frac{S_f}{18} = \left[\frac{1.5}{0.3} \times \frac{(0.3 + 0.3)}{(1.5 + 0.3)} \right]^2$$

$$\Rightarrow S_f = 50 \text{ mm}$$

28. (c)

Given, square footing,
$$B=1.8$$
 m
$$\gamma=16 \text{ kN/m}^3, C=0, \phi=30^\circ$$

$$D_f=0.8 \text{ m}$$

$$N_C=30.14, N_q=18.4 \text{ and } N_\gamma=15.1$$

We know for square footing,

$$\begin{split} q_u &= 1.3CN_C + qN_q + 0.4\gamma BN_\gamma \\ &= 0 + 16 \times 0.8 \times 18.4 + 0.4 \times 16 \times 1.8 \times 15.1 \\ &= 409.472 \text{ kN/m}^2 \end{split} \label{eq:quantum_potential}$$

So, the ultimate load that can be carried by the footing

=
$$q_u \times \text{area}$$

= $409.472 \times 1.8 \times 1.8$
= 1326.69 kN

29. (b)

For a raft on clayey soil, for
$$\frac{D_f}{B} = \frac{5}{10} = 0.5 < 2.5$$

$$q_{\text{nu}} = 5 \left(1 + 0.2 \frac{D_f}{B} \right) \left(1 + 0.2 \frac{B}{L} \right) C_u$$

$$= 5 \times \left(1 + 0.2 \times \frac{5}{10} \right) \left(1 + 0.2 \times \frac{10}{10} \right) \times 40$$

$$= 264 \text{ kN/m}^2$$

$$q_{\text{ns}} = \frac{q_{nu}}{F} = \frac{264}{2.5} = 105.6 \text{ kN/m}^2$$

30. (a)

The criteria for determining the design load is that it should be taken as minimum of the following:

Half the load at which settlement is 10% of the pile diameter.

10% of pile diameter = 30 mm

Load at 30 mm settlement = $140 + \frac{160 - 140}{34 - 27}(30 - 27)$ = 148.57 kN

Half of this load = 74.29 kN

(ii) Two third of the load at which pile settlement is 12 mm.

Load corresponding to 12 mm settlement = $60 + \frac{80 - 60}{13 - 10}(12 - 10)$

$$= 73.33 \text{ kN}$$

$$\therefore \frac{2}{3} \times 73.33 = 48.89 \text{ kN}$$

∴ Design load on pile = 48.89 kN