SI. : 01IGCE_GHIJ_3007202									0072024		
MADE EASY											
India's Best Institute for IES, GATE & PSUs											
	Delhi Bhopal Hyderabad Jaipur Pune Kolkata										
	Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612										
	CPMT-PERT										
	_		Data				24				
			Date	orrea	51:30	/////20	24				
AN	SWER K	EY >									
1.	(a)	7.	(c)	13.	(b)	19.	(d)	25.	(c)		
2.	(a)	8.	(c)	14.	(b)	20.	(d)	26.	(b)		
3.	(d)	9.	(b)	15.	(a)	21.	(b)	27.	(a)		
4.	(a)	10.	(a)	16.	(b)	22.	(b)	28.	(c)		
5.	(b)	11.	(c)	17.	(d)	23.	(b)	29.	(b)		
6	(d)	12.	(a)	18.	(a)	24.	(d)	30.	(c)		

India's Best Institute for IES, GATE & PSUs

DETAILED EXPLANATIONS

2.

Sinking fund factor
$$= \frac{i}{(1+i)^n - 1}$$

 $i = 6\% \ n = 6 \ years,$
 $\therefore \qquad SFF = \frac{0.06}{(1+0.06)^6 - 1} = 0.1433 \simeq 0.14$
(a)

^{3. (}d)

For

Gantt chart indicates comparison of actual progress with the scheduled progress.

- 4. (a)
- 5. (b)
- 6. (d)
- 7. (c)
- 8. (c)

Capital recovery factor,

CRF =
$$\frac{i(1+i)^n}{(1+i)^n - 1}$$

= $\frac{0.06 \times (1+0.06)^8}{(1+0.06)^8 - 1} = 0.1610$

- 9. (b)
- 10. (a)

$$t_e = \frac{\left(t_0 + 4t_m + t_p\right)}{6}$$
$$= \frac{\left(6 + 4 \times 11 + 16\right)}{6} = 11 \text{ days}$$

11. (c)

12.

$$Z = \frac{T_S - T_E}{\sigma}$$

Z normal deviate	1.1	1.2	1.3
%Probability	86.43	88.49	90.32

Value of *Z* for 90% probability.

	1.3-1.2	$=\frac{1.3-Z_{90}}{2}$
	90.32 - 88.49	90.32 - 90
\Rightarrow	Z ₉₀ =	= 1.2825
Using,	$T_E =$	= 45 weeks
	σ =	$= \sqrt{V}$
\Rightarrow	σ =	$=\sqrt{12.25}=3.5$
÷	Z _{ine} =	$= 1.2825 = \frac{T_S - 45}{1000}$
	90	3.5
\sim	$T_S =$	= 49.489 weeks \simeq 50 weeks
(a)		
		7 14
		2
	_	9
	7	8
	1	12 12 22 22
	0 0 1 9	4 ¹⁰ 5 ⁷ 7 ¹⁰ 8 46 46
		36 36
	7	5 8 6
		2
		5 6 7 7 20 20
		7 7 50 50
Path	1	Davs
1-2-	-8	16
1-2-	-5-7-8	32
1-2-	-5-6-7-8	39
1-4-	-5-7-8	36
1-4-	-5-6-7-8	43
1-3-	-4-5-7-8	39
\rightarrow 1-3-	-4-5-6-7-8	46 (Critical path)

13.

(b)

1-3-6-7-8 $\begin{array}{rcl}
(TF)_{2-5} &=& 22 - 7 - 8 = 7 \text{ days} \\
(FF)_{3-6} &=& (TF)_{3-6} - (Slack)_6 \\
&=& (30 - 7 - 6) - (30 - 30) \\
&=& 17 \text{ days} \\
\hline & \underbrace{1 - 4 - 6 - 8}_{6} &=& \underbrace{2 - 7 - 6}_{3} & \underbrace{4 - 10 - 13}_{4} & \underbrace{4}_{6} \\
& \underbrace{(t_E)_{1-2}}_{1-2} &=& \underbrace{4 + 4 \times 6 + 8}_{6} = 6 \text{ days} \\
& \underbrace{(t_E)_{2-3}}_{2-3} &=& \underbrace{5 + 4 \times 7 + 12}_{6} = 7.5 \text{ days} \\
& \underbrace{(t_E)_{3-4}}_{6} &=& \underbrace{4 + 4 \times 10 + 13}_{6} = 9.5 \text{ days} \\
\end{array}$

 $(t_{\rm E})_{\rm project} = t_{E_1} + t_{E_2} + t_{E_3} = 23 \text{ days}$

$$\sigma_{1-2} = \frac{8-4}{6} = \frac{2}{3}$$

$$\sigma_{2-3} = \frac{12-5}{6} = \frac{7}{6}$$

$$\sigma_{2-3} = \frac{13-4}{6} = \frac{9}{6} = \frac{3}{2}$$

$$\sigma_{\text{project}} = \sqrt{\sigma_{1-2}^2 + \sigma_{2-3}^2 + \sigma_{2-3}^2}$$

$$= \sqrt{\left(\frac{2}{3}\right)^2 + \left(\frac{7}{6}\right)^2 + \left(\frac{3}{2}\right)^2}$$

$$= \sqrt{0.444 + 1.3611 + 2.25} \\= 2.0137$$

Maximum expected time for project completion

= 29.0411 days \simeq 29 days

14. (b)

Standard deviation of project,

$$\sigma = \sqrt{4 + 16 + 4 + 1} = 5 \text{ days}$$

$$Z = \frac{T_s - T_E}{\sigma} = \frac{31 - 36}{5} = -1$$

$$P(t \le 31) = P(Z \le -1)$$

$$= 0.5 - \phi(1) = 0.5 - (0.8413 - 0.5)$$

$$= 0.1587 = 15.87\%$$

15. (a)

Thus,

Total volume of earth work in excavation,

$$V = L \times B \times H$$

$$H = 800 + 300 + 300 + 60$$

$$= 1460 \text{ mm}$$

$$B = 2000 \text{ mm}$$

$$L = 1000 \text{ mm}$$
 (:. Per meter length of footing is required)

$$V = \frac{1460 \times 2000 \times 1000}{10^9} \text{ m}^3$$

$$= 2.92 \text{ m}^3$$

16. (b)

Critical path is $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 6$

 \therefore Variance = 4

 \therefore Standard deviation = $\sqrt{Variance} = 2$

$$Z = \frac{X - \overline{X}}{2} = \frac{24 - 20}{2} = 2$$

:. From given table, Probability (Z = 2) = 97.92%

17. (d)

50% probability corresponds to time required for all activities to be completed along critical path i.e., 29.5 days.

18. (a)

...

$(F_T)_D = 14 - 4 - 3$ = 7 days

19. (d)

Limitation of bar chart:

- (i) Lack of degree of details
- (ii) Review of project progress
- (iii) It does not show interdependencies and relationship between various activities of the project.
- (iv) Time uncertainties
- (v) It does not indicate the critical activities of the project.

20. (d)

21. (b)

Duration range is given by

 $T_E \pm 3\sigma = (9T \pm 3\sigma)$ Standard deviation, $\sigma = \sqrt{\mu^2 + \mu^2 + \mu^2}$ $\Rightarrow \qquad \sigma = 3 \mu$ Duration range $= 9 T \pm 3(3 \mu)$ $= 9 T \pm 9 \mu$

22. (b)

∴ FDDB (fixed factor for double decline balance method = $\frac{2}{n}$ Where, n is useful line of equipment in year.

Hence,

FDDB =
$$\frac{2}{4} = \frac{1}{2}$$

So, book value at the end of second year (B_2) ,

$$= C_i (1 - FDDB)^2$$

= 200,000 $\left(1 - \frac{1}{2}\right)^2$
= $\frac{200,000}{4}$ = Rs. 50,000

Hence option (b) is correct.

23. (b)

From table for

$$P = 95\%$$

$$z = 1.6 + \frac{1.7 - 1.6}{99 - 91} (95 - 91) = 1.65$$

$$z = \frac{T_s - T_E}{\sigma}$$

Standard deviation,

 $\sigma = \sqrt{\text{Variance}} = \sqrt{16} = 4 \text{ weeks}$

© Copyright: MADE EASY

$$\therefore \qquad 1.65 = \frac{T_s - 50}{4}$$

$$\Rightarrow \qquad T_s = 56.6 \text{ weeks}$$

24. (d)

In resource levelling, project duration may get changed.

25. (c)

Indirect cost: Indirect cost of a project are those expenses which can not be assigned or associated to any individual activity of the project.

• Indirect cost is associated with a group of activities or project as a whole.

Project duration

- Indirect cost always increases with time.
- Overheads increases linearly with time at constant rate but outage loss increase non-linearly with time.

26. (b)

Cost slope =
$$\frac{\Delta c}{\Delta t}$$

For activity 1–2, cost slope = $\frac{9500 - 8000}{9 - 6}$ = Rs. 500

For activity 2–3, cost slope = $\frac{5500 - 5000}{2}$ = Rs. 250

Since cost slope of activity 2–3 is less and hence crashing it by 2 days.

$$(1) + (2) + (3) + (3)$$

Total project duration = 12 days

...

Total cost = $8000 + 5000 + 12 \times 300 + 2 \times 250 =$ Rs. 17100

27. (a)

$$t_{e} = \frac{t_{o} + 4t_{m} + t_{p}}{6}$$
$$t_{e_{AB}} = \frac{4 + 4 \times 6 + 8}{6} = 6 \text{ days}$$
$$t_{e_{BC}} = \frac{7 + 4 \times 7 + 9}{6} = 7.33 \text{ days}$$
$$t_{e_{CD}} = \frac{3 + 4 \times 4 + 9}{6} = 4.67 \text{ days}$$

∴Expected project duration= 18 days.

28. (c)

29. (b)

Effective cycle time = Forward time + Return time + Fixed time

$$= \left(\frac{100}{250 \times 0.8} + \frac{100}{300 \times 0.8}\right) 60 + 25$$

= 80 seconds

Hence option (b) is correct.

30. (c)

$$P_{\text{avg}} = \frac{P(n+1) + S(n-1)}{2n} = \frac{30 \times (5+1) + 5(5-1)}{2 \times 5} = 20 \text{ lakhs}$$