

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

CONTROL SYSTEM

EC-EE

Date of Test: 19/08/2024

ANSWER KEY >

1.	(b)	7.	(b)	13.	(b)	19.	(b)	25.	(d)
2.	(b)	8.	(b)	14.	(a)	20.	(a)	26.	(b)
3.	(a)	9.	(a)	15.	(d)	21.	(a)	27.	(b)
4.	(d)	10.	(d)	16.	(d)	22.	(a)	28.	(d)
5.	(c)	11.	(d)	17.	(b)	23.	(a)	29.	(a)
6.	(b)	12.	(d)	18.	(c)	24.	(c)	30.	(b)

DETAILED EXPLANATIONS

1. (b)

The signal flow graph for the given block diagram can be drawn as

As per signal flow graph, the loops are

This per signar now graph, the loops are
$$L_1 = G_2G_3(-1) = -G_2G_3$$

$$L_2 = G_1G_2H_1(-1) = -G_1G_2H_1$$

$$L_3 = G_1G_2H_1(-1) = -G_1G_2H_1$$

$$L_4 = G_1(-1)(-1)G_2H_1(-1) = -G_1G_2H_1$$

$$L_5 = G_1(-1)(-1)G_2H_1(-1) = -G_1G_2H_1$$

$$\therefore \qquad \Delta = 1 - (L_1 + L_2 + L_3 + L_4 + L_5)$$

$$= 1 - (-G_2G_3 - G_1G_2H_1 - G_1G_2H_1 - G_1G_2H_1 - G_1G_2H_1)$$

$$= 1 + G_2G_3 + 2G_1G_2H_1 + 2G_1G_2H_1$$

$$= 1 + G_2G_3 + 4G_1G_2H_1$$
and
$$P_1 = G_1G_2G_3$$

$$\Delta_1 = 1$$

$$P_2 = G_1(-1) = -G_1$$

$$\Delta_2 = 1$$

$$\therefore \qquad \frac{C}{R} = \frac{P_1\Delta_1 + P_2\Delta_2}{\Delta} = \frac{G_1(G_2G_3 - 1)}{1 + G_2G_3 + 4G_1G_2H_1}$$

2. (b)

The characteristic equation of the given system is,

$$1 + G(s)H(s) = 1 + \frac{K}{4s^3 + 2s^2 + 3s} = 0$$
$$4s^3 + 2s^2 + 3s + K = 0$$

Using Routh's tabular form,

$$\begin{array}{c|cccc}
\hline
s^3 & 4 & 3 \\
s^2 & 2 & K \\
s^1 & \frac{6-4K}{2} & \\
s^0 & K & \\
\end{array}$$

For stability,

and
$$\frac{6-4K}{2} > 0$$
or
$$4K < 6$$

$$K < \frac{3}{2}$$

So, the required condition is $0 < K < \frac{3}{2}$.

3. (a)

The closed loop transfer function,

$$\frac{C(s)}{R(s)} = \frac{12}{s(s+5)+12} = \frac{12}{s^2+5s+12}$$

Here, on comparing with standard second order transfer function, we get,

$$\omega_n = \sqrt{12}$$

and

$$\xi \omega_n = \frac{5}{2}$$

For 2% tolerance,

$$\tau_s = \frac{4}{\xi \omega_n} = \frac{4}{5/2} = \frac{8}{5} = 1.6 \text{ sec}$$

4. (d)

$$G(s)H(s) = \frac{K(s^2 + 2s + 10)}{(s^2 + 6s + 10)}$$

For,
$$s^2 + 6s + 10 = 0$$

$$s = \frac{-6 \pm \sqrt{36 - 40}}{2} = -3 \pm j$$

For,
$$s^2 + 2s + 10 = 0$$

$$s = \frac{-2 \pm \sqrt{4 - 40}}{2} = -1 \pm j3$$

$$G(s)H(s) = \frac{K(s+1+j3)(s+1-j3)}{(s+3+j)(s+3-j)}$$

.. There will be no break points.

5. (c)

$$c(t) = 1 + 0.5e^{-4t} - 1.5e^{-8t}$$

$$C(s) = \frac{1}{s} + \frac{0.5}{(s+4)} - \frac{1.5}{(s+8)}$$

$$= \frac{(s+4)(s+8) + 0.5(s)(s+8) - 1.5(s)(s+4)}{s(s+4)(s+8)}$$

$$= \frac{s^2 + 12s + 32 + 0.5s^2 + 4s - 1.5s^2 - 6s}{s(s+4)(s+8)}$$

$$= \frac{10s + 32}{s(s+4)(s+8)}$$

$$= \frac{(10s+32)}{(s+4)(s+8)}$$

For unit step input, $\frac{C(s)}{R(s)} = \frac{10s + 32}{s^2 + 12s + 32}$

Comparing with standard transfer function, we get,

$$\omega_n = \sqrt{32}$$

and

$$\xi \omega_n = \frac{12}{2} = 6$$

$$\xi = \frac{6}{\sqrt{32}} = 1.06$$

6. (b)

The standard form of transfer function of the compensator is

$$G_c(s) = \alpha \frac{1 + sT}{1 + \alpha sT}$$

∴ In time constant form,

$$G_c(s) = \frac{1(1+100s)}{10(1+10s)}$$

Here, T = 100 and αT = 10

$$\alpha = \frac{10}{100} = 0.1$$

∴ α < 1 ∴ Lead compensator.

7. (b)

The characteristic equation is given by

$$|sI - A| = 0$$

$$\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} s & -1 \\ 1 & s \end{bmatrix}$$

$$|sI - A| = \begin{bmatrix} s & -1 \\ 1 & s \end{bmatrix} = s^2 + 1$$

$$s = \pm i$$

As the roots are purely imaginary, thus the system has undamped response.

8. (b)

For $\omega = 0$, the plot starts at 0°, that means there will be no pole at origin, hence the type of the system is 0.

For $\omega = \infty$, the plot terminates at 270° i.e., the order of the system should be 3.

9. (a)

As the initial slope is 0 dB/dec.

$$20\log K = -20$$

$$\log K = -1$$

or

K = 0.1

at $\omega = 1$ rad/sec, the slope changes to 20 dB/dec, thereby adds a zero at $\omega = 1$ rad/sec

at ω = 10 rad/sec, the slope changes to 0 dB/dec thereby adds a pole at ω = 10 rad/sec. at ω = 100 rad/sec, the slope changes to -40 dB/dec thereby adds two poles at ω = 100 rad/sec

∴ Resultant transfer function is,

$$T(s) = \frac{0.1\left(\frac{s}{1}+1\right)}{\left(\frac{s}{10}+1\right)\left(\frac{s}{100}+1\right)^2} = \frac{10^4(s+1)}{(s+10)(s+100)^2}$$

10. (d)

Slope =
$$\frac{\text{Amount of rise}}{\text{Duration}} = \frac{40 \text{ dB} - (-20 \text{ dB})}{\text{log}100 - \text{log}10}$$
$$= \frac{60 \text{ dB}}{\text{log}\left(\frac{100}{10}\right)} = \frac{60 \text{ dB}}{1} = 60 \text{ dB/dec}$$

11. (d)

The location of the poles are given by, $-\xi \omega_n \pm j\omega_d$...(i)

where,

 ξ = damping ratio

 ω_n = natural frequency of oscillation

 ω_d = damped frequency of oscillation

Using maximum peak overshoot, the value of ξ can be obtained as

$$e^{-\pi\xi/\sqrt{1-\xi^2}} = 0.15$$

$$\frac{\xi}{\sqrt{1-\xi^2}} = 0.604$$

Squaring both the sides,

$$\xi^2 = 0.364(1 - \xi^2)$$

or
$$\xi^2 = \frac{0.364}{1.364} = 0.267$$

or
$$\xi = 0.517$$
 ...(ii)

now, peak time,
$$\tau_p = \frac{\pi}{\omega_d} = 3$$

or
$$\omega_d = \frac{\pi}{3} = 1.047 \text{ rad/sec}$$

$$\omega_d = \omega_n \sqrt{1 - \xi^2} \qquad \dots (iii)$$

:. From equation (ii) and (iii), we have

$$\omega_n = \frac{\omega_d}{\sqrt{1-\xi^2}} = \frac{1.047}{\sqrt{1-0.517^2}}$$

 $\omega_n = 1.223 \text{ rad/sec}$...(iv)

:. Location of poles are,

$$P = -\xi \omega_n \pm j\omega_d$$

= -(0.517 × 1.223) ± j1.047
= -0.632 ± j1.047

12. (d)

Steady state error,

$$e_{ss} = \lim_{s \to 0} sE(s)$$

$$= \lim_{s \to 0} s \times \frac{R(s)}{1 + G(s)H(s)}$$

$$= \lim_{s \to 0} \frac{s \times \left(2 + \frac{5}{s}\right) \times \frac{1}{s}}{1 + \frac{K}{s(s+3)}}$$

$$= \lim_{s \to 0} \frac{\frac{s(2s+5)}{s}}{s[s(s+3)+K]}$$

$$= \lim_{s \to 0} \frac{\frac{(2s+5)}{s} \times s(s+3)}{(s^2+3s+K)}$$

$$= \lim_{s \to 0} \frac{(2s+5)(s+3)}{s^2+3s+K}$$

$$2.75 = \frac{15}{K}$$

$$K = \frac{15}{2.75} = 5.45$$

or

13.

The steady state error is defined by

$$e_{ss} = \lim_{s \to 0} \frac{s \times \frac{1}{s^2}}{1 + \frac{(s+\alpha)}{s} \times \frac{(s+2)}{s^2 - 1}}$$
$$= \lim_{s \to 0} \frac{(s^2 - 1)}{s(s^2 - 1) + (s+\alpha)(s+2)}$$
$$e_{ss} = -\frac{1}{2\alpha}$$

$$S_{\alpha}^{e_{ss}} = \frac{\frac{\partial e_{ss}}{\partial s}}{\frac{\partial \alpha}{\alpha}} = \frac{\partial e_{ss}}{\partial \alpha} \times \frac{\alpha}{e_{ss}} = \frac{\partial}{\partial \alpha} \left(\frac{-1}{2\alpha}\right) \times \frac{\alpha}{-\frac{1}{2\alpha}}$$
$$= -\frac{\alpha^2}{\alpha^2} = -1$$

14. (a)

The characteristic equation is,

$$1 + G(s)H(s) = 0$$

$$s^2(s+a) + K\left(s + \frac{4}{3}\right) = 0$$

For K = 6

$$s^3 + as^2 + 6s + 8 = 0$$

Using Routh's method for 3rd order system for stability,

$$6a \geq 8$$

$$a \geq \frac{8}{6}$$

$$a \geq \frac{4}{3}$$

∴ For system to be unstable $a < \frac{4}{3} = 1.33$

15. (d)

The characteristic equation is,

$$1 + G(s) = 0$$

$$s(s+1)(s+2)(s+4) + K = 0$$

$$s^4 + 7s^3 + 14s^2 + 8s + K = 0$$

Using Routh's tabular form, we have

For system to be oscillatory

$$\frac{102.8 - 7K}{12.86} = 0 \implies K \approx 14.697$$

∴ Auxiliary equation,

$$12.86s^2 + K = 0$$

$$s^2 = \frac{-K}{12.86} = -\frac{14.697}{12.86} = -1.142$$

or

$$s = \pm j1.07$$

:.

$$\omega = 1.07 \text{ rad/sec}$$

(d) 16.

$$\frac{V_0(s)}{V_s(s)} = \frac{R_2}{\frac{R_1}{R_1 C s + 1} + R_2} = \frac{R_2(R_1 C s + 1)}{R_1 + R_2 + R_1 R_2 C s}$$

By rearranging, we get,

$$\frac{V_0(s)}{V_s(s)} = \frac{R_2}{R_1 + R_2} \times \left(\frac{1 + R_1 Cs}{1 + \frac{R_2}{R_1 + R_2} \cdot R_1 Cs} \right)$$

$$\alpha = \frac{R_2}{R_1 + R_2}$$

17. (b)

:.

The phase margin is given by,

PM =
$$180^{\circ} + \phi$$

$$60^{\circ} = 180^{\circ} + \left[-90^{\circ} - \tan^{-1}\omega - \tan^{-1}\frac{\omega}{3}\right]$$

$$-30^{\circ} = -\tan^{-1}\left(\frac{\frac{\omega}{1} + \frac{\omega}{3}}{1 - \frac{\omega^{2}}{3}}\right)$$

$$\tan 30^{\circ} = \frac{\omega + \frac{\omega}{3}}{1 - \frac{\omega^{2}}{3}}$$

$$\frac{1}{\sqrt{3}} = \frac{\frac{4\omega}{3}}{1 - \frac{\omega^2}{3}}$$

or
$$1 - \frac{\omega^2}{3} = \frac{4\omega}{\sqrt{3}}$$

$$\Rightarrow \qquad \omega^2 + 4\sqrt{3}\,\omega - 3 = 0$$

On solving the above equation, we get,

 $\omega = 0.408 \text{ rad/sec}$ and -7.33 rad/sec

Considering positive value of frequency for $\omega = \omega_{gc'}$ we have,

$$|G(j\omega)H(j\omega)|_{\omega = \omega_{gc}} = 1$$

$$\frac{K}{\omega\sqrt{\omega^2 + 1}\sqrt{\omega^2 + 9}} = 1$$

$$K = 0.408\sqrt{1.166} \times \sqrt{9.166}$$

$$K = 1.33$$

18. (c

The state diagram of the system shown in below figure is the cascade of the state diagram of two sub-systems.

From this state diagram, the input output equations can be written as

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -5x_{1} - 4x_{2} + 3x_{3} + 6u$$

$$\dot{x}_{3} = -2x_{3} + 6u$$

$$y = 2.5x_{1} + x_{2}$$

$$\begin{bmatrix} \dot{x}_{1} \\ \dot{x}_{2} \\ \dot{x}_{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -5 & -4 & 3 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 0 \\ 6 \\ 6 \end{bmatrix} u$$

$$y = \begin{bmatrix} 2.5 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

19. (b)

or

For crossing the ±180° line,

$$\pm 180^{\circ} = \tan^{-1}(4\omega) - 90^{\circ} - \tan^{-1}(2\omega) - \tan^{-1}(P\omega)$$

$$90^{\circ} = \tan^{-1}(4\omega) - \tan^{-1}\left(\frac{2\omega + P\omega}{1 - 2P\omega^{2}}\right)$$

$$= \tan^{-1}\left[\frac{4\omega - \frac{2\omega + P\omega}{1 - 2P\omega^{2}}}{1 + \frac{4\omega(2\omega + P\omega)}{1 - 2P\omega^{2}}}\right]$$

$$1 - 2P\omega^{2} + 8\omega^{2} + 4P\omega^{2} = 0$$

$$2P\omega^{2} + 8\omega^{2} + 1 = 0$$

$$(2P + 8)\omega^{2} = -1$$

$$\omega^{2} = -\frac{1}{(2P + 8)}$$

$$\frac{1}{4 \times 3} = \frac{-1}{2P + 8}$$

$$2P + 8 = -12$$

$$2P = -20$$

$$P = -10$$

Given

$$M_r = 4.2$$

$$M_r = \frac{1}{2\xi\sqrt{1-\xi^2}}$$

$$4.2 = \frac{1}{2\xi\sqrt{1-\xi^2}}$$

$$2\xi\sqrt{1-\xi^2} = \frac{1}{4.2} = 0.238$$

$$\xi^2(1-\xi^2) = \left(\frac{0.238}{2}\right)^2 = 0.0141$$

$$\xi^4 - \xi^2 + 0.0141 = 0$$

On solving, we get,

$$\xi^2 = 0.985, 0.0143$$

$$\xi^2 = 0.985, 0.0143$$

 $\xi = 0.992, 0.119$

The valid answer is 0.119.

21.

From the given state model, the transfer function can be calculated as

$$T(s) = C(sI - A)^{-1} B$$

$$= \begin{bmatrix} 1 \\ 2 \end{bmatrix}^{T} \begin{bmatrix} s & -1 \\ 2 & s+5 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \end{bmatrix} \times \frac{1}{s(s+5)+2} \begin{bmatrix} s+5 & 1 \\ -2 & s \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 \end{bmatrix} \times \frac{1}{s(s+5)+2} \begin{bmatrix} 1 \\ s \end{bmatrix}$$

$$T(s) = \frac{1+2s}{s^2 + 5s + 2}$$

 \therefore Open loop transfer function for unity negative feedback system becomes

$$G(s) = \frac{1+2s}{s^2+5s+2-2s-1} = \frac{1+2s}{s^2+3s+1}$$

For unit step input,

$$K_p = \lim_{s \to 0} G(s)H(s) = \lim_{s \to 0} \frac{1+2s}{s^2+3s+1} = 1$$

$$e_{ss} = \frac{1}{1 + K_p} = \frac{1}{2} = 0.5$$

22. (a)

$$T(s) = \frac{C(s)}{R(s)} = \frac{2\alpha}{s(s+1)+2\alpha}$$

$$S_{\alpha}^{T} = \frac{\partial T/T}{\partial \alpha/\alpha} = \frac{\partial T}{\partial \alpha} \times \frac{\alpha}{T} = \frac{\partial}{\partial \alpha} \left(\frac{2\alpha}{s(s+1)+2\alpha}\right) \times \frac{\alpha}{T}$$

$$= \frac{(s^{2}+s+2\alpha)2-2\alpha(2)}{(s^{2}+s+2\alpha)^{2}} \times \frac{\alpha}{T} = \frac{2s^{2}+2s+4\alpha-4\alpha}{(s^{2}+s+2\alpha)^{2}} \times \frac{\alpha(s^{2}+s+2\alpha)}{2\alpha}$$

$$= \frac{2s(s+1)}{(s^{2}+s+2\alpha)} \times \frac{1}{2}$$

$$= \frac{s(s+1)}{s(s+1)+2\alpha} = \frac{1}{1+\frac{2\alpha}{s(s+1)}}$$

23. (a)

For gain margin of 10 dB,

$$GM = 20\log \frac{1}{|G|}_{\omega = \omega_{pc1}}$$

$$\therefore \frac{1}{|G|_{\omega pc1}} = 10^{\left(\frac{10}{20}\right)} = 3.167$$

$$|G|_{\omega pc_1} = 0.315$$

For new gain margin of 18 dB, the gain at ω_{pc2} is

$$18 = 20\log \frac{1}{|G|_{\omega pc2}}$$

$$\log \frac{1}{|G|_{\omega pc2}} = \frac{18}{20} = 0.9$$

$$\frac{1}{|G|_{\omega pc2}} = 7.943$$

$$\therefore |G|_{\omega pc_2} = 0.126$$

 \therefore The gain must be multiplied by a factor of $\frac{0.126}{0.315} = 0.4$

24. (c)

State transition matrix = $e^{At} = L^{-1}(sI - A)^{-1}$

$$\therefore \qquad L^{-1} \begin{bmatrix} s & -1 \\ 1 & s+2 \end{bmatrix}^{-1} = L^{-1} \left[\frac{Adj(sI-A)}{|sI-A|} \right]$$

$$= L^{-1} \begin{bmatrix} s+2 & 1 \\ -1 & s \\ \hline s(s+2)+1 \end{bmatrix}$$

$$= L^{-1} \begin{bmatrix} \frac{s+2}{s^2+2s+1} & \frac{1}{s^2+2s+1} \\ -1 & \frac{s}{s^2+2s+1} \end{bmatrix}$$

$$= L^{-1} \begin{bmatrix} \frac{s+2}{(s+1)^2} & \frac{1}{(s+1)^2} \\ -1 & \frac{s}{(s+1)^2} \end{bmatrix}$$

$$= L^{-1} \begin{bmatrix} \frac{s}{(s+1)^2} + \frac{2}{(s+1)^2} & \frac{1}{(s+1)^2} \\ -1 & \frac{s}{(s+1)^2} & \frac{s}{(s+1)^2} \end{bmatrix}$$

$$= \begin{bmatrix} (1+t)e^{-t} & te^{-t} \\ -te^{-t} & (1-t)e^{-t} \end{bmatrix}$$

25. (d)

The state model form is

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 3 \\ -1 \end{bmatrix} u$$

$$Y = \begin{bmatrix} 3 & -2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

:. Characteristic equation becomes,

$$[sI - A] = 0$$

$$\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} -2 & -1 \\ 0 & -4 \end{bmatrix} = 0$$

$$\begin{bmatrix} s+2 & 1 \\ 0 & s+4 \end{bmatrix} = 0$$

$$(s+2)(s+4) = 0$$

$$s^2 + 6s + 8 = 0$$

On comparing it with standard second order system CE we get

$$ω_n^2 = 8$$

$$2ξω_n = 6$$

$$ξω_n = 3$$

$$ξ = \frac{3}{\sqrt{8}} = 1.06 \text{ (overdamped)}$$

26. (b)

The root locus can be plotted as

$$G(s)H(s) = \frac{K}{s(s+2)(s+1-j)(s+1+j)}$$

$$\therefore \qquad n = 4 \text{ and } m = 0$$

Asymptotes =
$$\theta_q = \frac{(2q+1)\pi}{P-Z} = \frac{(2q+1)\pi}{n-m}$$

$$= \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4} \text{ and } \frac{7\pi}{4}$$

Centroid =
$$\sigma = \frac{\Sigma P - \Sigma Z}{n - m} = \frac{-2 - 1 - 1 - 0}{4} = -1$$

break point =
$$\frac{dK}{ds}$$
 = 0

$$K = -(s)(s+2)(s^2+2s+2)$$

$$\frac{dK}{ds} = \frac{d}{ds} \left[s^4 + 4s^3 + 6s^2 + 4s \right] = 0$$

or
$$s^3 + 3s^2 + 3s + 1 = 0$$

 $(s+1)^3 = 0$

∴ actual break points are -1, -1 and -1

 \therefore break angle at s = -1

$$\pm \frac{\pi}{r} = \pm \frac{180^{\circ}}{4} = \pm 45^{\circ}$$

The intersection with imaginary axis can be obtained by RH criteria.

as
$$s^4 + 4s^3 + 6s^2 + 4s + K = 0$$

For intersection with $j\omega$ axis,

$$K \max = 5$$

$$\therefore$$
 auxiliary equation = $5s^2 + K = 0$

$$5s^2 + 5 = 0$$

$$s = \pm i1$$

Angle of departure for complex pole (-1 + j) is

$$\theta_d = 180^{\circ} - (90^{\circ} + 180^{\circ} + \phi - \phi)$$

Complete root locus can be plotted as

27. (b)

The block diagram can be solved as

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

$$= \frac{\frac{2}{(s+3)(s+12)}}{1 + \frac{2 \times 9}{(s+3)(s+12)}} = \frac{2}{s^2 + 15s + 54}$$

On comparing it with standard second order transfer function, we have

$$\omega_n^2 = 54$$

$$2\xi\omega_n = 15$$

$$\xi = \frac{15}{2\sqrt{54}} = \frac{15}{14.6969} = 1.02 \text{ (overdamped)}$$

or

28. (d)

The characteristic equation is

$$|sI - A| = 0$$

$$\begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} -2 & 1 \\ 0 & -K \end{bmatrix} = 0$$

$$\begin{vmatrix} s+2 & -1 \\ 0 & s+K \end{vmatrix} = 0$$

$$(s+2)(s+K) = 0$$

$$s^{2} + (2+K)s + 2K = 0$$
 ...(i)

For having 12% of maximum peak overshoot, the value of ξ can be determined as

$$0.12 = e^{-\pi\xi/\sqrt{1-\xi^2}}$$

$$\frac{\xi}{\sqrt{1-\xi^2}} = 0.6749$$

$$0.455(1-\xi^2) = \xi^2$$
or
$$\xi^2 = \frac{0.455}{1+0.455} = 0.3129$$
or
$$\xi = 0.559 \simeq 0.56$$

$$\tau_s = \frac{4}{\xi\omega_n}$$

$$\xi\omega_n = \frac{4}{\tau_s} = \frac{4}{0.5} = 8$$

$$\omega_n = \frac{8}{0.56} = 14.30$$
from equation (i)
$$\omega_n = \sqrt{2K}$$

$$2K = \omega_n^2 = (14.30)^2$$

$$K = 102.25$$

29. (a)

The characteristic equation is,

$$1 + \frac{K}{s(s+3)(s^2+s+1)} = 0$$

$$s(s+3)(s^2+s+1) + K = 0$$

$$(s^2+3s)(s^2+s+1) + K = 0$$

$$s^4+4s^3+4s^2+3s+K = 0$$

In order to sustain oscillation

$$\frac{\frac{39}{4} - 4K}{\frac{13}{4}} = 0$$

$$\Rightarrow$$

$$K = \frac{39}{16}$$

The subsidiary equation of the third row becomes

$$\frac{13}{4}s^2 + \frac{39}{16} = 0$$

$$s = \pm 0.866j$$

Oscillation frequency is 0.866 rad/sec.

30. (b)

$$\phi(t) = L^{-1}[(sI - A)^{-1}]$$

$$(sI - A) = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -8 & -6 \end{bmatrix}$$

$$(sI - A) = \begin{bmatrix} s & -1 \\ 8 & s + 6 \end{bmatrix}$$

$$(sI - A)^{-1}$$
 = $\frac{1}{s^2 + 6s + 8} \begin{bmatrix} s + 6 & 1 \\ -8 & s \end{bmatrix}$

$$= \begin{bmatrix} \frac{s+6}{(s+2)(s+4)} & \frac{1}{(s+2)(s+4)} \\ \frac{-8}{(s+2)(s+4)} & \frac{s}{(s+2)(s+4)} \end{bmatrix}$$

$$\phi(t) = L^{-1}[(sI - A)^{-1}] = \begin{bmatrix} (2e^{-2t} - e^{-4t}) & \left(\frac{1}{2}e^{-2t} - \frac{1}{2}e^{-4t}\right) \\ (-4e^{-2t} + 4e^{-4t}) & (-e^{-2t} + 2e^{-4t}) \end{bmatrix}$$