

DETAILED EXPLANATIONS

1. (c)

Frequency, $f = \frac{PN}{120} = \frac{4 \times 1500}{120}$ *PN* $= 50$ Hz Total number of stator conductor = Number of slots \times conductor per slot $= 80 \times 6 = 480$ Stator conductor per phase, $Z_p = \frac{480}{3} = 160$ Winding factor, $k_w = 0.98$ Generated voltage per phase, E_p = 2.22 × k_w × f × ϕ × Z_p $= 2.22 \times 0.98 \times 50 \times 0.04 \times 160$ $= 696.19$ V Generated line voltage, $E_L = \sqrt{3}E_p = 1205.83$ V

2. (d)

Both statements are correct for starting of synchronous motor. It is recommended to connect an external resistance 7 to 10 times the field resistance to avoid insulation damage.

3. (c)

Thus by phasor we can conclude that

- F_e leads F_a by angle $(90 + \theta + \delta)$
- *F_q* leads *F_a* by angle $(δ + θ)$
- F_d lags F_a by angle (90 (δ + θ))
- F_e leads V_t by angle (90 + δ).

4. (a)

Power angle is the angle between E_f and V_t

As *E'* and E_f are in phase, angle between *E'* and V_t is also equal to power angle, δ

Quadrature axis function,	$X_q = 1.2$ p.u.
$U_d = 1.2$ p.u.	
$E' = V_t + jI_aX_q$	
$= 1 + j1 \times 1.2$	
$= 1.562∠50.19^\circ$ A	
$\delta = 50.194^\circ$	
(b)	
Emf equation synchronous motor is given as	
$\vec{E} = \vec{V}_t - \vec{I}_a\vec{Z}_s$	
Given that,	$\vec{V}_t = 1∠0^\circ$ p.u., $\vec{I}_a = 1∠90^\circ$ p.u., $\vec{Z}_s = 0.5∠90^\circ$ p.u.
$\vec{E} = 1∠0^\circ - (1∠90^\circ) \times (0.5∠90^\circ)$	
$= 1 - 0.5∠180^\circ$	
$\vec{E} = 1 + 0.5∠0^\circ = 1.5$ p.u.	
(a)	
Given that,	$V_t = 1.0$ pu, $I_a = 1.0$ pu, 0.8 pf lagging
$\phi = \cos^{-1} 0.8 = 36.9^\circ$	
$x_d = 0.8$ pu, $x_q = 0.5$ pu	
$\tan \psi = \frac{V_t \sin \phi + I_a x_q}{V_t \cos \phi + I_a r_a} = \frac{1 \times 0.6 + 1 \times 0.5}{1 \times 0.8 + 0} = \frac{11}{8}$	
$\psi = \tan^{-1} \left(\frac{11}{8}\right) = 53.97^\circ \approx 54^\circ$	
Power angle,	

7. (b)

5. (b)

6. (a)

3rd harmonic voltage in line of Y-connected generator is neutralized. So,

$$
V_{L,peak} = \sqrt{6}V_{ph(rms)} = 231\sqrt{6} = 565.83
$$
 volts

8. (b)

As we know,

$$
I_{sc} \propto \frac{E_f}{X_s} \propto \frac{I_f \times f}{f}
$$
 ($\therefore I_{sc} \propto I$
 $I_f \propto \frac{I_f}{f}$ = 2.2 1.5

$$
I_{sc2} = I_{sc1} \times \frac{I_{f2}}{I_{f1}} = 20 \times \frac{1.5}{1} = 30 \text{ A}
$$

9. (d)

f)

10. (a)

By large air-gap length, the reluctance of the air-gap increases, so that the leakage flux decreases hence leakage reactance decreases. So, flux distribution will improved (more sinusoidal). Because of large air-gap length, armature reaction decreases. So, the voltage regulation will be less.

11. (b)

Given,

Synchronous impedance, $X_s = 0.8 + j5.6 = 5.656 \angle 81.86$ ° Ω Per phase voltage, $V_p = \frac{\text{Rated line voltage}}{\sqrt{3}} =$ 3.3 kV $\frac{1}{3}$ = 1.905 kV $\vec{E}_{f \text{phase}}$ = 1.905 – 5.656∠81.86° × 0.16∠–36.9° = 1.905 – 0.90496∠44.96° = 1.417∠–26.82° kV or 2.454 kV (line)

We can draw per phase diagram,

Mechanical power developed,

$$
P_{\text{mech (dev)}} = 3E_f I_p \cos(\phi + \delta)
$$

= 3 × 1.417 × 160 cos(-36.9° + 26.82°)
= 669.66 kW
Shaft power output = 669.66 - 30 = 639.66 kW
Power input = $\sqrt{3} \times 3.3 \times 160 \times 0.8 = 731.5 \text{ kW}$
 $\eta = \frac{\text{Shaft power output}}{\text{Total input}} = \frac{639.66}{731.5} \times 100 = 87.44\%$

Alternate Solution :

Power input =
$$
\sqrt{3} \times 3.3 \times 160 \times 0.8
$$

\n= 731618.26 = 731.618 kW
\nCopper loss = $31^2R = 3 \times (160)^2 \times R$
\n= 61.44 kW
\nPower output = 640.178 kW
\n $\eta = \frac{640.178}{731.618} \times 100 = 87.44\%$

12. (b)

We know, terminal voltage, $V_t = 1$ p.u.

Also,
\n
$$
I_{a} = 1 \text{ p.u. } 0.8 \text{ p.f. lagging}
$$
\n
$$
\phi = \cos^{-1} 0.8 = 36.86^{\circ}
$$
\n
$$
X_{d} = 0.8 \text{ p.u.}
$$
\n
$$
X_{q} = 0.6 \text{ p.u.}
$$

$$
\tan \psi = \frac{V_t \sin \phi + I_a X_q}{V_t \cos \phi + I_a X_a} = \frac{1 \times 0.6 + 0.6 \times 1}{1 \times 0.8 + 0} = 1.5
$$

\n
$$
\psi = \tan^{-1} (1.5) = 56.309^\circ
$$

\nPower angle, $\delta_1 = \psi - \phi = 56.309^\circ - 36.86^\circ$
\n
$$
= 19.449^\circ
$$

\n
$$
E_f = V_t \cos \delta + I_a X_d + I_a r_a = V_t \cos \delta + (I_a \sin \psi) X_d
$$

\n
$$
= 1 \times \cos 19.449 + (1 \times \sin 56.309) \times 0.8
$$

\n
$$
= 0.9429 + 0.66563
$$

\n
$$
= 1.60853 \text{ p.u.}
$$

13. (d)

$$
S_{\text{in}} \bigotimes
$$

\n
$$
S_{\text{in}} \bigotimes
$$

\n
$$
= \sqrt{3} \times 220 \times 40 \times \angle \cos^{-1}(0.707)
$$

\n
$$
= 15.242 \angle 45^{\circ} \text{ kVA}
$$

\n
$$
= (10.78 + j10.78) \text{ kVA}
$$

\n
$$
= \int_{\text{motor}} = P_{\text{motor}} + jQ_{\text{motor}}
$$

\n
$$
P_{\text{motor}} = 33 \text{ kW}
$$

\nUsing
\n
$$
P_{\text{motor}} = \frac{E_f \times 220}{1.27} \sin 30^{\circ} = 33 \times 10^3
$$

\n
$$
E_f = (\sqrt{3} \times 220) = 381 \text{ V (L-L)}
$$

\n
$$
Q_{\text{motor}} = \frac{220}{1.27} (-381 \cos 30^{\circ} + 220) = -19.047 \text{ kVAR (leading)}
$$

\n
$$
\vec{S}_{\text{motor}} = (33 - j19.047) \text{ kVA}
$$

\n
$$
\vec{S}_{\text{in}} = \vec{S}_{\text{motor}} + \vec{S}_{\text{Load}}
$$

\n
$$
= (33 + 10.48) + j(10.78 - 19.047)
$$

\n
$$
= 43.78 - j8.267
$$

\n
$$
= 45.55 \angle -10.70^{\circ} \text{ kVA}
$$

\nPower factor = cos(-10.70) = 0.9826 leading

14. (a)

At maximum power conditions,

$$
\delta = \theta_s
$$

\n
$$
\delta = \cos^{-1} \left[\frac{0.4}{8} \right] = \cos^{-1} [0.05] = 87.134^{\circ}
$$

\n
$$
E_f \angle \delta = V_f \angle 0 + I_a Z_s
$$

\n
$$
E_f \text{ (per phase)} = \frac{12000}{\sqrt{3}} = 6928.20 \text{ V}
$$

 V_t (per phase) = 11000 $\frac{1}{3}$ = 6350.852 V $E_f \cos \delta + j E_f \sin \delta = V_t + I_a \angle -\phi \cdot Z_s \angle \theta_s$ $= V_t + I_a Z_s \angle θ_s - φ$ E_f cos $\delta + j E_f$ sin $\delta = V_t + I_a Z_s$ cos($\theta_s - \phi$) + $jI_a Z_s$ sin($\theta_s - \phi$) Comparing real and imaginary part, $E_f \cos \delta = V_t + I_a Z_s \cos(\theta_s - \phi)$ E_f sin $\delta = I_a Z_s$ sin $(\theta_s - \phi)$ $6928.20 \times \cos 87.134 = 6350.85 + 8I_a \cos(\theta_s - \phi)$ $346.411 = 6350.85 + 8I_a \cos(\theta_s - \phi)$ 8 I_a cos(θ_s – φ) = -6004.438 $I_a \cos(\theta_s - \phi) = -750.554$...(i) Also $sin(\theta_s - \phi) = 6928.20 \times sin 87.134$ 8 *I_a* sin(θ_{*s*} – φ) = 6919.534 I_a sin($\theta_s - \phi$) = 864.941 ...(ii) By squaring and adding equation (i) and (ii), *I ^a* = 1145.187 A Using equation (i), $I_a \cos(\theta_s - \phi) = -750.554$ $\cos(\theta_s - \phi) = -0.65539$ θ*s* – φ = 130.949 $87.134 - \phi = 130.949$ ϕ = -43.815° cos $\phi = 0.7215$ **15. (b)** For open circuit test, Given, $V_{OC} = 400 \text{ V (rms)}$ line voltage Phase voltage, $V_{\text{OC, ph}} = \frac{400}{\sqrt{3}} = 230.94 \text{ V}$ Field current, $I_f = 2.5 \text{ A}$ For short circuit test, $I_{SC} = 12 \text{ A (rms, phase)}$ $I_f = 1.08 \text{ A}$ ∴ Base impedance, $Z_{base} = \frac{V_{OC}}{I_{SC}} = \frac{230.94}{12}$ *OC SC* $\frac{V_{OC}}{I_{SC}} = \frac{230.94}{12}$ = 19.245 Ω Also, for synchronous impedance at rated voltage saturation is also considered ∴ SCR = S(sat) p.u. for V_{OC} 1 for f ¹⁰¹ V _{OC} f ¹⁰¹¹SC</sub> I_f for V_g $\frac{I_f \text{ for } V_{OC}}{I_f \text{ for } I_{SC}} = \frac{1}{Z_{S(sat) \text{ pu}}} = \frac{2.5}{1.8}$ $\frac{1}{1.8}$ = 1.3888 $Z_{S(\text{sat})p.u.} = \frac{1}{1.3888} = 0.72 \text{ p.u.}$ ∴ Actual value of Z_S at rated voltage

$$
= Z_{S \text{ (sat)p.u.}} \times Z_{\text{base}}
$$

= 0.72 × 19.245
= 13.85 Ω

16. (a)

Since winding is double layer,

No. of coils = 36 Since each coil is passes 8 turns,

So total number of turns =
$$
36 \times 8 = 288
$$
 turns

So, No. of coils = No. of slots

Turns per phase =
$$
\frac{\text{Total no. of turns}}{\text{No. of phases}} = \frac{288}{2} = 144 \text{ Turns/phase}
$$

\n
$$
m = \frac{\text{Slot}}{\text{Pole} \times \text{Phase}} = \frac{36}{6 \times 2} = 3
$$
\n
$$
\beta = \frac{180^{\circ} \times \text{Poles}}{\text{Slots}} = \frac{180^{\circ} \times 6}{36} = 30^{\circ}
$$

 $\sin\left(\frac{m_{\rm P}}{2}\right)$ $\sin(45^\circ)$

m

Distribution factor,

or,
\n
$$
K_d = \frac{\sin\left(\frac{m\beta}{2}\right)}{m\sin\left(\frac{\beta}{2}\right)} = \frac{\sin(45^\circ)}{3\sin(15^\circ)} = 0.91
$$
\n
$$
\text{Emf per phase} = 4.44\phi_m f N_{ph} K_d = 4.44 \times 0.015 \times 50 \times 144 \times 0.91
$$
\n
$$
= 436.36 \text{ volts/phase}
$$

 $= 0.91$

$$
E_{L(rms)} = \sqrt{2}E_{\text{ph(rms)}} = \sqrt{2} \times 436.36 = 617.11 \text{ volts}
$$

17. (b)

$$
\vec{I}_a = 1 \angle 36.86 \text{ p.u.}
$$
\n
$$
\vec{V}_t = 1 \text{ p.u.}
$$
\n
$$
\vec{Z}_s = j0.6 \text{ p.u.}
$$
\n
$$
\vec{E}_f = \vec{V}_t - \vec{I}_a \vec{Z}_s = 1 \angle 0 - 0.6 \angle 126.86^\circ
$$
\n
$$
= 1.44 \angle -19.44^\circ \text{ p.u.}
$$
\n∴
$$
E_f = 1.44 \text{ p.u.}
$$
\n
$$
\delta = -19.44^\circ
$$

As we know,

$$
Full\text{-load torque} = (\text{Maximum torque}) \cdot \sin \delta
$$
\n
$$
\frac{\text{Maximum torque}}{\text{Full load torque}} = \frac{1}{\sin \delta} = \frac{1}{\sin 19.44} = 3.00
$$

Hint: The ratio of two torque of a single machine can't be negative, don't put δ to –δ.

18. (b)

$$
375 = \frac{120 \, \text{xf}}{16} \Rightarrow f = 50 \, \text{Hz}
$$
\n
$$
\text{Slosts per pole} = \frac{144}{16} = 9
$$

Slots per pole per phase,

\n
$$
m = \frac{144}{16 \times 3} = 3
$$
\n
$$
\beta = \frac{180^{\circ}}{\text{slots per pole}} = 20^{\circ}
$$
\n
$$
k_d = \frac{\sin \frac{m\beta}{2}}{m \sin \frac{\beta}{2}} \implies k_d = \frac{0.5}{3 \times 0.174} = 0.96
$$
\n
$$
Z = \text{number of conductors in series per phase} = \frac{144 \times 10}{2} = 480
$$

 $Z =$ number of conductors in series per phase 3 $E_{\text{line}} = \sqrt{3} \times 4.44 f N_{ph} \phi_m k_d$

$$
= \sqrt{3} \times 4.44 \times 0.96 \times 0.03 \times \frac{480}{2} \times 50
$$

= 2657.76 V

19. (b)

$$
P_{sy} = \frac{EV}{X_s} \cos \delta
$$

where *P sy* = symmetrical power coefficient *P_{sy}* α stability α excitation At '*Q*' the excitation is more than at '*P*'.

So it is more stable at *Q*.

20. (a)

$$
Z_{s(\text{adjusted})} = \frac{V_{\text{rated}} / \sqrt{3}}{I_{\text{sc}}} \times I_{\text{ft}}
$$
 corresponding to $V_{\text{oc}} = V_{\text{rated}}$

Rated armature current,

 $\sqrt{2}$

$$
\frac{3V_{\text{rated}}}{I_{a(\text{rated})}} = 10 \text{ MVA}
$$
\n
$$
I_{a(\text{rated})} = \frac{10 \times 10^3}{\sqrt{3} \times 13.8} = 418.4 \text{ A}
$$
\n
$$
I_{f(\text{rated})} = 842 \text{ A}
$$
\n
$$
I_{sc} = \frac{418.4}{226} \times 842 = 1558.8 \text{ A}
$$
\n
$$
Z_{s(\text{adjusted})} = \frac{13.8 \times 10^3 / \sqrt{3}}{1558.8} = 5.11 \text{ }\Omega
$$
\n
$$
X_{s(\text{adjusted})} = \sqrt{Z_{s(\text{adjusted})}^2 - R_a^2}
$$
\n
$$
= \sqrt{5.11^2 - 0.75^2} = 5.054 \text{ }\Omega
$$
\n
$$
X_{s(\text{pu})} = 5.054 \times \frac{10}{(13.8)^2} = 0.2654
$$

 \bar{V}

21. (a)

$$
Z_a = (0.5 + j2) \Omega
$$

= 2.06∠75.96° Ω; $V_t = 415$ V, $E_f = 500$
Maximum developed power =
$$
\frac{E_f V_t}{Z_s} - \frac{E_f^2}{Z_s^2} \times R_a
$$

$$
P_{\text{dev}} = \frac{500 \times 415}{2.06} - \left(\frac{500}{2.06}\right)^2 \times 0.5
$$

$$
= 71.272 \text{ kW}
$$
is is per phase power.

This is per phase p

∴ Shaft power output = [3 × 71.272 – 1] kW $= 212.81$ kW

22. (b)

Given, 44 MVA, Y-connected, 3-φ salient pole synchronous generator. It deliver a rated load at 0.8 p.f. lag,

$$
V = 10.5 \text{ kV}, \quad X_d = 1.83 \text{ }\Omega
$$
\n
$$
X_q = 1.21 \text{ }\Omega, \text{ Y-connected}
$$
\n
$$
\tan\Psi = \frac{V \sin \phi + I_a X_q}{V \cos \phi + I_a R_a}
$$
\n
$$
V_{\text{ph}} = \frac{V_a}{\sqrt{3}} = 6062.17 \text{ V}
$$
\n
$$
I_a = \frac{P}{\sqrt{3}V_L} = \frac{44 \times 10^6}{\sqrt{3} \times 10.5 \times 10^3} = 2419.3 \angle -36.86^\circ \text{A}
$$
\n
$$
\tan\Psi = \frac{(6062.17 \times 0.6) + (2419.3 \times 1.21)}{(6062.17 \times 0.8) + (2419.3 \times 0)}
$$
\n
$$
\Psi = 53.546^\circ
$$
\n
$$
\Psi = 8 + \phi
$$
\n
$$
\delta = 53.546^\circ - 36.86^\circ
$$
\n
$$
= 16.686^\circ \approx 16.69
$$

23. (a)

Consider the circuit diagram drawn below:

From circuit diagram we can write,

$$
\vec{E}_f = 1 + j \ 0.8 \ (12 - 36.86^{\circ})
$$
\n
$$
\vec{E}_f = 1.61 \angle 23.4^{\circ} \text{ p.u.}
$$
\nHere, power angle, $\delta = 23.4^{\circ}$

Real power;
$$
P_e = \frac{V_t E_f}{X_s} \sin \delta
$$

\nSynchronizationg power, $\frac{dP_e}{d\delta} = \frac{V_t E_f}{X_s} \cos \delta = \frac{1 \times 1.61}{0.8} \cos(23.4^\circ)$
\n $\frac{dP_e}{d\delta} = 1.847 \text{ p.u./ electrical radian}$
\nor,
\n $\frac{dP_e}{d\delta} = 1.847 \times 10^3 \times \frac{\pi}{180} \text{ kW/electrical degree}$
\n $= 32.236 \text{ kW/electrical degree}$
\nor,
\n1 electrical degree = $\frac{P}{2}$ mechanical degree
\nthen;
\n $\frac{dP_e}{d\delta} = 32.236 \times 4 \text{ kW/mechanical degree}$
\n $\frac{dP_e}{d\delta} = 128.944 \text{ kW/mechanical degree}$

24. (b)

Power (P) =
$$
\frac{VE_f}{X_s} \sin \delta
$$

0.75 = $\frac{1 \times 1.25}{0.7} \sin \delta$
 $\delta = 24.83^{\circ}$

Current is given by,

$$
\vec{I} = \frac{\vec{E}_f - \vec{V}}{jX} = \frac{1.25 \angle 24.83^\circ - 1 \angle 0^\circ}{j0.7}
$$

\n
$$
I = 0.77 \angle -14.36^\circ
$$

\nPhase angle, $\phi = 14.36^\circ$
\nPower factor = cos ϕ = 0.9688 (lagging)

25. (a)

Excitation emf,
$$
(\vec{E}_f) = \vec{V} + \vec{I}_a Z_s
$$

\nArmature current,

\n
$$
I_a = \frac{20 \times 10^3}{\sqrt{3} \times 400} = 28.87 \text{ A}
$$
\n
$$
\vec{E}_f = \frac{400}{\sqrt{3}} + (28.87 \angle 36.87^\circ) \times (0.5 + j3)
$$
\n
$$
\vec{E}_f = 205.85 \angle 22.25^\circ \text{ V}
$$
\nVoltage regulation =
$$
\frac{|E_f| - |V|}{|V|} \times 100
$$

\n
$$
= \frac{205.85 - \left(\frac{400}{\sqrt{3}}\right)}{\left(\frac{400}{\sqrt{3}}\right)} \times 100 = -10.86\%
$$

26. (c)

Power angle can be calculated as,

∴ Power angle, $\delta = 38.65^{\circ}$

$$
\vec{E}'_f = \vec{V}_t + j\vec{l}_a X_q
$$

As rated load is being supplied at unity power factor,
∴
$$
\vec{l}_a = 1\angle 0^\circ \text{ p.u.}
$$

$$
\vec{E}'_f = 1.0\angle 0^\circ + j1.0\angle 0^\circ \text{ (0.8)}
$$

$$
= 1.28\angle 38.65^\circ \text{ p.u.}
$$

27. (a)

Full load current =
$$
\frac{25 \times 10^3}{\sqrt{3} \times 400 \times 0.8} = 45.11 \text{ A}
$$

Excitation emf $\vec{E}_f = \vec{V} - j\vec{l}_a X$
=
$$
\frac{400}{\sqrt{3}} - (45.11 \angle 36.87^\circ)(j7)
$$

=
$$
490.5 \angle -31^\circ \text{ V}
$$

Rotor angle slip by 0.25 mechanical degree,

$$
\theta_e = \frac{P}{2}\theta_m
$$

\n
$$
\Delta \delta = \frac{4}{2} \times 0.25 = 0.5^\circ
$$

\nSynchronizationg emf = $2E_f \sin \frac{\Delta \delta}{2}$
\n= $2 \times 490.5 \sin(\frac{0.5}{2}) = 4.28 \text{ V}$
\nSynchronizationg current = $\frac{4.28}{7} = 0.611 \text{ A}$

28. (a)

For double layer winding,

No. of slots = No. of coils

\nTotal number of turns =
$$
60 \times 10 = 600
$$

\nTurns per phase = $\frac{600}{3} = 200$

\nPitch factor $(K_c) = \cos 18^\circ = 0.951$

\nDistribution factor $(K_d) = \frac{\sin \frac{m\beta}{2}}{m \sin \frac{\beta}{2}}$

\n $m = \frac{60}{4} \times \frac{1}{3} = 5$

\n $\beta = \frac{180}{60/4} = 12^\circ$

$$
K_{d} = \frac{\sin \frac{5 \times 12}{2}}{5 \sin \frac{12}{2}} = 0.9567
$$

Induced emf, $E_{\text{ph}} = \sqrt{2\pi} K_{\text{m}} \phi f T_{\text{ph}}$
 $E_{\text{ph}} = 606.33 \text{ V}$
 $E_{\text{ph}} = 606.33 \text{ V}$
 $E_{\text{ph}} = 606.33 \text{ V}$
 $E_{\text{ph}} = 1.05 \text{ kV}$
29. (c)
Given,
 $V_{\text{t}} = 1.0 \text{ p.u.}$
 $I_{\text{a}} = 1.05 \text{ kV}$
29. (d)
Given,
 $V_{\text{t}} = 1.0 \text{ p.u.}$
 $I_{\text{a}} = 0.0 \text{ p.u.}$
 $I_{\text{a}} = 0.5 \text{ p.u.}$
 $X_{\text{d}} = 0.8 \text{ p.u.}$
As we can use the relation,
 $\tan \psi = \frac{V_{\text{t}} \sin \phi + I_{\text{a}} X_{\text{q}}}{V_{\text{t}} \cos \phi + I_{\text{a}} T_{\text{a}}}$ [∴ Here $r_{\text{a}} = 0$]
that $\psi = \frac{1 \times 0.6 + 1 \times 0.5}{1 \times 0.8 + 0}$
or
 $\tan \psi = 53.97^{\circ}$
Power angle; $\delta = \psi - \phi$ [for generator]
 $= 53.97^{\circ}$
∴ Power angle; $\delta = \psi - \phi$ [for generator]
 $= 53.97^{\circ} - 36.86^{\circ}$
 $= 17.11^{\circ}$
We can write,
No load voltage; $E_{\text{f}} = V_{\text{f}} \cos \delta + I_{\text{a}} X_{\text{d}}$
 $= V_{\text{t}} \cos \delta + I_{\text{a}} X_{\text{d}}$
 $= V_{\text{t}} \cos \delta + I_{\text{a}} X_{\text{d}}$
 $= 1.602 \text{ p.u.} \approx 1.60 \text{ p.u$

 \vec{E}_f = 1.905 × 10³∠0° – 5.56∠81.724° × 160∠–36.86° $E_f = 1.42\angle -26.22$ ° kV

Now
\n
$$
P_{\text{mech (dev)}} = 3 \times 1.42 \times 160 \cos (-36.86^{\circ} + 26.22^{\circ})
$$
\n
$$
= 669.88 \text{ kW}
$$
\n
$$
\text{shaft output} = 669.88 - 30 = 639.88 \text{ kW}
$$
\n
$$
\text{Power input} = \sqrt{3} \times 3.3 \times 160 \times 0.8
$$
\n
$$
= 731.62 \text{ kW}
$$
\n
$$
\eta_{\text{full load}} = \frac{\text{Output}}{\text{Input}} \times 100 = \frac{639.88}{731.62} \times 100 = 87.46\%
$$

BEER