

DETAILED EXPLANATIONS

1. (c)

Given:
\n
$$
A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}
$$
\n
$$
A^2 = I
$$

By Cayley Hamilton theorem

$\lambda^2 = 1$ \Rightarrow $\lambda = \pm 1$ are eigen values $|A| = -1$ – α2 – βγ = – 1 1– α^2 – $\beta \gamma = 0$

Alternative:

Given: $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$

$$
A^{2} = A.A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix} = \begin{bmatrix} \alpha^{2} + \beta\gamma & 0 \\ 0 & \beta\gamma + \alpha^{2} \end{bmatrix}
$$

Given that
$$
A^{2} = I
$$

Given that

$$
\begin{bmatrix} \alpha^2 + \beta \gamma & 0 \\ 0 & \beta \gamma + \alpha^2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$

$$
\therefore \qquad \alpha^2 + \beta \gamma = 1
$$

$$
1 - \alpha^2 - \beta \gamma = 0
$$

$$
2. \qquad (b)
$$

Given,
\n
$$
4x_4 + 13x_5 = 46
$$
\n...(1)
\n
$$
2x_1 + 5x_2 + 5x_3 + 2x_4 + 10x_5 = 161
$$
\n...(2)

- $2x_3 + 5x_4 + 3x_5 = 61$...(3)
 $4x_4 + 5x_5 = 30$...(4)
	- $4x_4 + 5x_5 = 30$...(4)

$$
2x_1 + 3x_2 + 2x_3 + 1x_4 + 5x_5 = 81
$$
...(5)
Solving (1) and (4)

$$
x_5 = 2
$$

$$
x_4 = 5
$$

Putting in (3) we get

$$
2x_3 + 25 + 6 = 61
$$

$$
x_3 = 15
$$

Alternative:

The matrix form of the equation is

 $[A|B] =$ $0 \t0 \t0 \t4 \t13 \t46$ $2\;\; 5\;\; 5\;\; 2\;\; 10 \,|\, 161$ $0 \t0 \t2 \t5 \t3 \t61$ $0 \t0 \t0 \t4 \t5 \t30$ 2 3 2 1 5 i 81 $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 3 & 2 & 1 & 5 & 81 \end{bmatrix}$ Rewriting it as below $[A|B] =$ $2 \quad 5 \quad 5 \quad 2 \quad 10 \mid 161$ $2 \t3 \t2 \t1 \t5 \t31$ $0 \t0 \t2 \t5 \t3 \t61$ $0 \t0 \t0 \t4 \t13 \t46$ 0 0 0 5 30 4 $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ $[0 \t 0 \t 0 \t 4 \t 5 \t 30]$ Applying, $R_2 \rightarrow R_1 - R_2$ and $R_5 \rightarrow R_4 - R_5$ $2 \quad 5 \quad 5 \quad 2 \quad 10 \mid 161$ $0 \t2 \t3 \t1 \t5 \t80$ $0 \t0 \t2 \t5 \t3 \t61$ $0 \t0 \t0 \t4 \t13 \t46$ 0 0 0 0 8 16 $\begin{bmatrix} 2 & 5 & 5 & 2 & 10 & 161 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $[0 \ 0 \ 0 \ 0 \ 8 \ 16]$ $\begin{bmatrix} 2 & 5 & 5 & 2 & 10 \\ 0 & 2 & 2 & 1 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $[0 \ 0 \ 0 \ 0 \ 8 \]$ $[x_5]$ 2 3 4 5 2 5 5 2 10 0 2 3 1 5 $0 \t0 \t2 \t5 \t3$ $0 \t0 \t0 \t4 \t13$ *x x x x x* = \vert 161 \vert $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ $\mid 80 \mid$ $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ | 46 | $\lfloor 16 \rfloor$ 161 80 61 46 16 Now, we get $8x_5 = 16$ $x_{5} = 2$ and $4x_4 + 13x_5 = 46$ $x_4 = 5$ Similarly, $2x_3 + 5x_4 + 3x_5 = 61$ $2x_3 + 25 + 6 = 61$ $x_2 = 15$ **3. (c)** ∵ One of the eigen value is 0, ∴ Determinant of matrix is equal to 0. So, $B_{11} B_{22} - B_{12} B_{21} = 0$ **4. (b)** Here, $A =$ $\begin{vmatrix} 1 & 2 & 3 \end{vmatrix}$ $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$ $\begin{vmatrix} 0 & 1 & 1 \end{vmatrix}$ $\begin{bmatrix} 0 & 2 & 2 \end{bmatrix}$ 123 011 022 and $B =$ $\vert 2 \vert$ $\boxed{-1}$ $\left[\begin{array}{c} 0 \end{array}\right]$ 2 1 0

 $[A|B] =$ $1 \t2 \t3 \t2$ $0 \quad 1 \quad 1 \mid -1$ 0 2 2 \vert 0 $\begin{vmatrix} 0 & 1 & 1 & -1 \end{vmatrix}$ $\begin{bmatrix} 0 & 2 & 2 & 0 \end{bmatrix}$ Applying, $R_3 \rightarrow R_3 - 2R_2$ $[A|B] =$ $1 \t2 \t3 \t2$ $0 \quad 1 \quad 1 \mid -1$ $0 \quad 0 \quad 0 \mid 2$ $\begin{vmatrix} 0 & 1 & 1 & -1 \end{vmatrix}$ $\begin{bmatrix} 0 & 0 & 0 & 2 \end{bmatrix}$ ∴ Rank $[A] = 2$ and rank $[A|B] = 3$

Since rank (A) < rank $(A | B)$, the given system of equations is inconsistent, and hence there is no solution.

5. (b)

Statements 1 and 3 are correct.

- For the orthogonal martix $|A| = +1$ or -1 .
- For a $n \times n$ matrix, inverse exists only if rank = n .

6. (a)

Given,

$$
\frac{d^2y}{dx^2} + \frac{6dy}{dx} + 9y = 5e^{3x}
$$

\n(D² + 6D + 9)y = 5e^{3x}
\nAuxiliary equation is $m^2 + 6m + 9 = 0$
\n $(m + 3)^2 = 0$
\n $m = -3, -3$
\nComplementary function = $(c_1 + c_2x)e^{-3x}$

Particular integral =
$$
\frac{1}{D^2 + 6D + 9} 5e^{3x} = \frac{5e^{3x}}{(3)^2 + 6(3) + 9} = \frac{5e^{3x}}{36}
$$

The complete solution is,

$$
y = (c_1 + c_2 x)e^{-3x} + \frac{5e^{3x}}{36}
$$

7. (c)

Given equation: $\sin x \frac{dy}{dx} + 2y = \tan^3 x$ 2 *x*

$$
\Rightarrow \qquad \frac{dy}{dx} + \frac{2}{\sin x}y = \frac{\tan^3 \frac{x}{2}}{\sin x}
$$

This is linear form of $\frac{dy}{dx} + Py = Q$

$$
\therefore \qquad P = \frac{2}{\sin x}
$$

Integrating factor =
$$
e^{\int P dx} = e^{\int \frac{2}{\sin x} dx}
$$

\n= $e^{2\int \csc x dx}$
\n= $e^{\int 2 \ln \tan \frac{x}{2}} = \tan^2 \frac{2 \ln \tan \frac{x}{2}}{2} = \tan^2 \frac{2 \$

8. (b)

Given

$$
\frac{dy}{dx} + \frac{x}{y} = 0
$$
\n
$$
\frac{dy}{dx} = -\frac{x}{y}
$$
\n
$$
\int ydy = -\int xdx
$$
\n
$$
\frac{y^2}{2} = -\frac{x^2}{2} + c
$$
\n
$$
x^2 + y^2 = 2c
$$
\nRepresents family of circles.

2 *x*

9. (b)

If *z* is function of *x* alone, the solution will be *z* = *A*sin*x* + *B*cos*x*, where *A* and *B* are constants. Since *z* is a function of *x* and *y*, *A* and *B* can be arbitrary functions of *y*. Hence the solution of the given equation is

$$
m = \pm i
$$

\n
$$
z = e^{0} [A \cos x + B \sin x]
$$

\n
$$
z(0) = A + 0
$$

\n
$$
e^{y} = A
$$

$$
\frac{\partial z}{\partial x} = -A\sin x + B\cos x
$$

At $x = 0$

$$
\frac{\partial z}{\partial x} = 1
$$

$$
B = 1
$$

$$
z = e^y \cos x + \sin x
$$

10. (a)

Given,

$$
\frac{(\cos 3\theta + i \sin 3\theta)^4 (\cos 4\theta + i \sin 4\theta)^{-5}}{(\cos 4\theta + i \sin 4\theta)^3 (\cos 5\theta + i \sin 5\theta)^{-4}} = \frac{(\cos 12\theta + i \sin 12\theta)(\cos(-20\theta) + i \sin(-20\theta))}{(\cos 12\theta + i \sin 12\theta)(\cos(-20\theta) + i \sin(-20\theta))}
$$

$$
= \frac{(\cos \theta + i \sin \theta)^{12} (\cos \theta + i \sin \theta)^{-20}}{(\cos \theta + i \sin \theta)^{12} (\cos \theta + i \sin \theta)^{-20}} = 1
$$

11. (c)

Given,
$$
\lim_{x \to 0} \frac{\log x}{\cot x} \; ; \; \frac{\infty}{\infty} \; \text{Form}
$$

Applying L' Hospital's rule.

$$
\lim_{x \to 0} \frac{1/x}{-\csc^2 x} = -\lim_{x \to 0} \frac{\sin^2 x}{x} \qquad ; \quad \frac{0}{0} \text{ form}
$$

Again applying L' Hospital's rule.

$$
= -\lim_{x \to 0} \frac{2\sin x \cos x}{1} = 0
$$

12. (b)

Given,
$$
\int_{0}^{a} \frac{x^7}{\sqrt{(a^2 - x^2)}} dx
$$

Put
$$
x = a\sin\theta
$$

\n $dx = a\cos\theta d\theta$

Changing limits:

when
$$
x = 0
$$
, $\theta = 0$, where $x = a$, $\theta = \frac{\pi}{2}$

$$
\int_{0}^{\pi/2} \frac{a^7 \sin^7 \theta}{a \cos \theta} a \cos \theta d\theta = a^7 \int_{0}^{\pi/2} \sin^7 \theta d\theta
$$

$$
= \frac{a^7 (n-1)(n-3)...2}{n(n-2)...3}
$$

$$
= a^7 \frac{6 \times 4 \times 2}{7 \times 5 \times 3} = \frac{16}{35} a^7
$$

−

n n

23

CE • Engineering Mathematics | 11

NOTE:
• When *n* is odd,
$$
\int_{0}^{\pi/2} \sin^{n} x dx = \frac{(n-1)(n-3)(n-5)...2}{n(n-2)(n-4)...3}
$$

• When *n* is even,
$$
\int_{0}^{\pi/2} \sin^{n} x dx = \frac{(n-1)(n-3)(n-5)...1}{n(n-2)(n-4)...2} \frac{\pi}{2}
$$

13. (c)

Given, parabola is, $x^2 = 8y$ and the straight line is, $x - 2y + 8 = 0$

 The required area *POQ* = area bounded by straight line & $\, \mid \,$ (area bounded by parabola & $\left(\begin{array}{l}\text{area bounded by straight line}\ \&\ \text{x-axis from}\ x=-4\text{ to}\ x=8\end{array}\right)-\left(\begin{array}{l}\text{area bounded by parabola}\ \&\ \text{x-axis from}\ x=-4\text{ to}\ x=8\end{array}\right)$ = $\frac{8}{3}x+8$ $\frac{8}{3}x^2$ 4 -4 8 2 $\frac{1}{4}$ 8 $\frac{x+8}{2}dx - \int \frac{x^2}{2}dx$ $\int_{-4}^{6} \frac{x+8}{2} dx - \int_{-4}^{6}$ = 2 $\left|\begin{array}{cc} 8 & 1 \end{array}\right| x^3\left|\begin{array}{c} 8 \end{array}\right|$ 4^{0} 3^{1} -4 $\frac{1}{2} \left| \frac{x^2}{2} + 8x \right| - \frac{1}{2}$ $2|2 \t| \t| \t 8|3$ $\left| \frac{x^2}{2} + 8x \right| - \frac{1}{2} \left| \frac{x}{2} \right|$ -4 $8 \mid 3 \mid$ $+8x$ – $=\frac{1}{2} | (32 + 64) - (-24) | - \frac{1}{24} (512 + 64)$ $+64)-(-24)$ – $\frac{1}{21}(512+$ $=\frac{1}{2}[96+24]-\frac{1}{24}(576)=36$ square unit

14. (b)

 $f(x) = 0$ is the root of the solution. Clearly the line, $f(x) = 0$ intersects at 4 distinct points in $0 \le x \le 6$.

15. (a)

By Newton-Raphson method,

$$
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}
$$

\n
$$
f(x) = x^4 - 3x + 1
$$

\n
$$
f'(x) = 4x^3 - 3
$$

\nGiven,
\n
$$
x_0 = 0
$$

\n
$$
f(x_0) = 0^4 - 3 \times 0 + 1 = 1
$$

\n
$$
f'(x_0) = 4 \times 0^3 - 3 = -3
$$

Hence, $x_1 = 0 - \frac{1}{-3} = \frac{1}{3}$

16. (d)

Bisection, Regula-falsi, Secant and Newton -Raphson methods are used to solve non-linear algebraic and transcendental equations.

17. (d)

The Fourier coefficient 0 $\frac{1}{\pi} \int_0^{\pi} x \sin nx dx = \frac{2}{\pi} \int_0^{\pi} x \sin nx dx$ $\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi}$

 $(x \sin nx$ is an even function on $[-\pi, \pi]$)

$$
= \frac{2}{\pi} \left[-x \left(\frac{\cos nx}{n} \right) + \left(\frac{\sin nx}{n^2} \right) \right]_0^{\pi}
$$

$$
= \frac{2}{\pi} \left[\frac{-\pi \cos n\pi}{n} \right] = \frac{2}{n} (-1)^{n+1} \qquad \text{Put } n = 3
$$

$$
b_3 = \frac{2}{3} (-1)^4 = \frac{2}{3}
$$

18. (d)

Taylor series expansion of a function $f(x)$ about $x = 0$ is given by

$$
f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \frac{x^3}{3!}f'''(0) + \dots
$$

Coefficient of $x^2 = \frac{f''(0)}{2!} = \frac{f''(0)}{2}$
Given:

$$
f(x) = \cos^2 x
$$

$$
f'(x) = -\sin(2x)
$$

$$
f''(x) = -2\cos(2x)
$$

$$
f''(0) = -2\cos(0) = -2
$$

Therefore coefficient of $x^2 = \frac{f''(0)}{2} = \frac{-2}{2} = -1$

19. (b)

The probability that *A* can solve the problem = 1 $\overline{2}$. The probability that *A* cannot solve the problem.

$$
= 1 - \frac{1}{2} = \frac{1}{2}
$$

Similarly the probability that *B* and *C* cannot solve the problem are $\left(1-\frac{3}{4}\right)$ $\left(1-\frac{3}{4}\right)$ and $\left(1-\frac{1}{4}\right)$ $\left(1-\frac{1}{4}\right).$ The probability that *A*, *B* and *C* cannot solve the problem = $\left(1-\frac{1}{2}\right) \times \left(1-\frac{3}{4}\right) \times \left(1-\frac{1}{4}\right) = \frac{3}{2}$ $\left(1-\frac{1}{2}\right) \times \left(1-\frac{3}{4}\right) \times \left(1-\frac{1}{4}\right) = \frac{3}{32}$ The probability that the problem will be solved is = $1 - \frac{3}{32} = \frac{29}{32}$

20. (d)

Here there are three types of families. **Case I**: For, zero child family. Probability of a family having no child (boys) = 0.2 **Case II**: For one child family

In this case probability of a family having no boy = $0.3 \times 0.5 = 0.15$ **Case III**:

In this case probability of a family having no boy = $0.5 \times \frac{1}{2}$ $\times \frac{1}{3} = 0.167$ Considering all three cases,

Probability of a family having no boy = $0.2 + 0.15 + 0.167 = 0.517$

21. (a)

 $p = 1\% = 0.01, n = 100, m = np = 100 \times 0.01 = 1$

$$
P(r) = \frac{e^{-m} (m)^r}{r!} = \frac{e^{-1} (1)^r}{r!} = \frac{e^{-1}}{r!}
$$

P(4 or more faulty condensers)

$$
= P(4) + P(5) + \dots P(100)
$$

= 1 - [P(0) + P(1) + P(2) + P(3)]
= 1 - \left[\frac{e^{-1}}{0!} + \frac{e^{-1}}{1!} + \frac{e^{-1}}{2!} + \frac{e^{-1}}{3!} \right]
= 1 - e^{-1} \left[1 + 1 + \frac{1}{2} + \frac{1}{6} \right] = 1 - \frac{8}{3} e^{-1}

22. (a)

Given,

$$
f(x) = 3x^3 - 7x^2 + 5x + 6
$$

\n
$$
f'(x) = 9x^2 - 14x + 5
$$

\n
$$
f''(x) = 18x - 14
$$

\n
$$
f'(x) = 0
$$

\n
$$
9x^2 - 14x + 5 = 0
$$

\n
$$
x = 1, 0.55
$$

For $x = 1$, $f''(1) = 18 - 14 = 4 > 0$ (local minima) For $x = 0.55$ $f''(0.55) = -4.1 < 0$ (local maxima) Minimum {*f*(0), *f*(1), *f*(2)} Minimum {6, 7, 12} = 6

23. (a)

The eigen values of an orthogonal matrix *A* are real or complex conjucates in pairs and have absolute value 1.

24. (d)

$$
\begin{vmatrix}\n\cos\theta - \lambda & \sin\theta \\
-\sin\theta & \cos\theta - \lambda\n\end{vmatrix} = 0
$$

\n
$$
\cos^2\theta + \lambda^2 - 2\lambda\cos\theta + \sin^2\theta = 0
$$

\n
$$
1 + \lambda^2 - 2\lambda\cos\theta = 0
$$

\n
$$
\lambda^2 - 2\lambda\cos\theta + 1 = 0
$$

\n
$$
\lambda = \frac{2\cos\theta \pm \sqrt{4\cos^2\theta - 4}}{2}
$$

\n
$$
= \cos\theta \pm \sqrt{\cos^2\theta - 1}
$$

\n
$$
= \cos\theta \pm i \sin\theta
$$

\n
$$
\lambda = e^{i\theta}, e^{-i\theta}
$$

Hence, $e^{i\theta}$ and $e^{-i\theta}$ are the eigen values.

25. (b)

Let the roots be *a*/*r*, *a*, *ar* then the product of the roots $a^3 = n$ ∴ *a* = (*n*)1/3 So, $(n) - l(n)^{2/3} + mn^{1/3} - n = 0$ or $m = ln^{1/3}$ Cubing both sides, we get $m^3 = l^3n$, which is the required condition.

26. (b)

A is skew symmetric,

Now,
\n
$$
A = -A^T
$$
\n
$$
(A.A)^T = A^T.A^T
$$
\n
$$
= (-A)(-A) = A.A
$$

∴ *A.A* is a symmetric matrix.

27. (b)

$$
\begin{bmatrix} 1+2x+15 & 3+5x+3 & 2+x+2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0
$$

(1 + 2x + 15) + 2(3 + 5x + 3) + (2 + x + 2)x = 0
2x + 16 + 10x + 12 + x² + 4x = 0
x² + 16x + 28 = 0

ERSY MORDE ERSY

By solving, we get,

So, $|x|_{\text{max}} = 14$

28. (d)

The auxiliary equation is

$$
D3 - 2D2 + 4D - 8 = 0
$$

(x - 2)(x² + 4) = 0
x = 2, ±2i

The solutions of eqution is

$$
y = C_1 e^{2x} + C_2 \sin 2x + C_3 \cos 2x
$$

 $x = -2, -14$

29. (a)

$$
PI = \frac{1}{(D+1)^2} e^{-x} \cos x = e^{-x} \left\{ \frac{1}{D^2} \cos x \right\}
$$

$$
= e^{-x} \left\{ \frac{1}{D} \sin x \right\} = e^{-x} \left\{ -\cos x \right\} = -e^{-x} \cos x
$$

30. (b)

 $(x + \log y)dy + ydx = 0$

 $Mdx + Ndy = 0$

<u>pina</u>

The equation is exact if

It is in the form,

$$
\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}
$$

$$
\frac{\partial M}{\partial y} = 1, \frac{\partial N}{\partial x} = 1
$$

⇒The equation is exact and hence solution is

$$
(x + logy)dy = 0
$$

$$
xy + y logy - y + C = 0
$$

$$
0 + 0 - 1 + C = 0
$$

$$
C = 1
$$

Hence, the solution is, $y(x - 1 + \log y) + 1 = 0$