

DETAILED EXPLANATIONS

$$
1. (c)
$$

2. (c)

3. (d)

Vorticity,
\n
$$
\Omega = 2\omega_z = \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right) = \frac{\partial}{\partial x}(4xy) - \frac{\partial}{\partial y}(xy^2)
$$
\n
$$
\Omega = 4y - 2xy
$$
\nAt (1, 2),
\n
$$
\Omega_{(1,2)} = 4 \times 2 - 2 \times 1 \times 2 = 8 - 4 = 4s^{-1}
$$
\n(c)
\nAs per given data,
\nGauge pressure = 350 kPa
\nBarometric reading = 740 mm Hg
\n
$$
\rho_{Hg} = 13590 \text{ kg/m}^3
$$
\nThe atmospheric (or barometric) pressure can be expressed,
\n
$$
P_{\text{atm}} = \rho g h = 13590 \times 9.81 \times 740 \times 10^{-3}
$$
\n
$$
= 98.655 kPa
$$
\nThen the absolute pressure in the tank is
\n
$$
P_{\text{abs}} = P_{\text{gauge}} + P_{\text{atm}} = 350 kPa + 98.655 kPa
$$
\n
$$
P_{\text{abs}} = 448.655 kPa
$$
\n(d)
\nContinuity equation, $Q_1 = Q_2 + Q_3$
\nNow,
\n
$$
Q_2 = A_2 V_2 = 0.008 V_2
$$
\nNow,
\n
$$
Q_3 = A_3 V_3 - 0.004 V_3 = 0.004 \times 2V_2
$$
\n[Given, $V_3 = 2V_2$]
\nNow, $Q_2 = Q_3$

∴ Discharge at point 3, $Q_3 = \frac{Q_1}{2} = \frac{0.3}{2} = 0.15 \text{ m}^3/\text{s}$

4. (d)

By Newton's law of viscosity,

$$
\tau = \mu \frac{du}{dy}
$$

0.5 = $\mu \times \frac{1-0}{(0.010-0)}$
 $\mu = 0.005 = 5 \times 10^{-3} \text{ Ns/m}^2$.

5. (d)

Total energy of a flowing fluid can be represented in terms of head which is given by

$$
\left(\frac{P}{\rho g} + \frac{V^2}{2g} + Z = \text{Constant}\right).
$$

Piezometric head is the sum of pressure head and datum head and it is given by $\left(\frac{P}{\alpha q} + Z\right)$ $\left(\frac{P}{\rho g} + Z\right)$ $\left(\frac{\overline{p}}{\rho g}+Z\right)$.

The pressure at any point in a static fluid is obtained by hydrostatic law which is given by *P* = –ρ*gh*, where *h* is the height of the point from the free surface. As we go down h is negative so the pressure gets increased and datum gets decreased.

Therefore, Piezometric head remains constant at all points in the liquid.

6. (b)

As for laminar flow,

Boundary layer thickness (δ) ∝ $\frac{1}{\sqrt{\text{Re}}}$

As the free stream velocity, $\uparrow \uparrow$, $\delta \downarrow \downarrow$

$$
\therefore \text{ Re} = \frac{\rho V D}{\mu}
$$

For turbulent flow,

Boundary layer thickness (δ) $\propto \frac{1}{(\text{Ro})^{1/5}}$ (Re)

As the free stream velocity $\uparrow \uparrow$, $\delta \downarrow \downarrow$ and it also depending on the kinematic viscosity $\delta \uparrow \uparrow$ as kinematic viscosity (v) \uparrow .

7. (c)

We know, $C_d = C_c$

$$
= C_C \times C_V
$$

= 0.95 \times \left[\frac{0.180}{0.200}\right]^2 = 0.769

8. (c)

As we know, the average velocity in fully developed laminar pipe flow is

$$
V_{\text{avg}} = \frac{1}{2} V_{\text{max}}
$$

$$
V_{\text{max}} = 2 V_{\text{avg}} = 2 \times 2 = 4.0 \text{ m/s}
$$

9. (c)

10. (a)

11. (a)

Applying Bernoulli's equation between the two reservoirs, we get

$$
12.5 = 0.5 \frac{V^2}{2g} + \frac{fLV^2}{2gD} + \frac{V^2}{2g}
$$

\n
$$
\Rightarrow \qquad 12.5 = \frac{V^2}{2g} \left[1.5 + \frac{fL}{D} \right]
$$

\n
$$
\Rightarrow \qquad 12.5 = \frac{V^2}{2 \times 10} \left[1.5 + \frac{0.04 \times 1000}{0.5} \right]
$$

 \Rightarrow 12.5 = $\frac{1}{22} \times$ 2 81.5 20 *V* \Rightarrow $V = 1.75 \text{ m/s}$

12. (d)

As, Drag force, $F = \rho V^2 L^2$ *m p F* $\overline{F_n}$ = ρ ρ $2I_I2$ $2I_I$ m ^{*v*} m *L* m p ν p ν p V_m^2L $\overline{V_n^2 L_n^2}$... (i) As, $Re_m = Re_p$ ρ μ m^Vm^Lm *m* V_m L = ρ μ *ppp p* V_pL L

$$
\frac{V_m}{V_p} = \frac{L_p}{L_m}
$$
 ... (ii)

Using equation (i) and (ii)

$$
\frac{F_m}{F_p} = 1
$$

 \Rightarrow $F_p = 300 \text{ N}$

13. (b)

Volume of the cube, $V = 125$ mL a^3 = 125 × 10⁻³ × 10⁻³ m³ $a = 0.05$ m

Pressure at bottom surface,

$$
P_{\text{bottom}} = P_{\text{atm}} + (\rho g h)_{\text{oil}} + [\rho g (h + a)]_{\text{water}}
$$

= 101 × 10³ + (800 × 9.81 × 0.5) + [1000 × 9.81 × (0.3 + 0.05)]

$$
P_{\text{bottom}} = 108357.5 \text{ Pa}
$$

$$
F_{\text{bottom}} = P_{\text{bottom}} \times A
$$

= 108357.5 × 0.05² = 270.89 N

14. (a)

$$
\tau = \mu \frac{du}{dx} = \mu (4 - 4x)
$$

= 2(4 - 4 × 1) = 0 N/m²

15. (a)

Pressure gradient
$$
\left(\frac{\partial p}{\partial x}\right)
$$
,
\n∴ $U_{\text{max}} = \frac{-1}{8\mu} \left(\frac{\partial p}{\partial x}\right) \times t^2$
\n⇒ $3 = \frac{-1}{8 \times 0.02} \left(\frac{\partial p}{\partial x}\right) \times (0.015)^2$

$$
\left(\frac{\partial p}{\partial x}\right) = \frac{-3 \times 8 \times 0.02}{(0.015)^2} = -2133.33 \text{ N/m}^2/\text{m}
$$

⇒

Given: *u* = 2*xy*2, *v* = 3 *xyt*

$$
a_x = u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + \frac{\partial u}{\partial t} = 2xy^2 \times 2y^2 + 3xyt \times 4xy + 0
$$

At (1, 1) and $t = 1$ s, $a_x = 2 \times 2 + 12 = 16$ m/s²

$$
a_y = u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + \frac{\partial v}{\partial t} = 2xy^2 \times 3yt + 3xyt \times 3xt + 3xy
$$

At (1, 1) and
$$
t = 1s
$$
, $a_y = 6 + 9 + 3 = 18 \text{ m/s}^2$

$$
a = \sqrt{a_x^2 + a_y^2} = \sqrt{16^2 + 18^2} = 24.08 \text{ m/s}^2 \approx 24.1 \text{ m/s}^2
$$

17. (a)

Radius:
$$
r = 10 \text{ mm}
$$

\n $\therefore \text{ Diameter:} \qquad d = 2r = 2 \times 10 = 20 \text{ mm} = 0.02 \text{ m}$
\n $m = 72 \text{ kg/hr} = \frac{72}{3600} = 0.02 \text{ kg/s}$
\n $\mu = 0.002 \text{ kg/ms}$
\nReynolds number: Re = $\frac{\rho V d}{\mu}$

From continuity equation, *m* = ρ*AV*

or
$$
V = \frac{m}{\rho A} = \frac{m}{\rho \pi d^2} = \frac{4m}{\rho \pi d^2}
$$

$$
Re = \frac{\rho d}{\rho d} \times \frac{4m}{\rho} = \frac{4m}{\rho} = \frac{4 \times 0.02}{\rho} = 636.62
$$

$$
\therefore \qquad \text{Re} = \frac{\rho d}{\mu} \times \frac{4 \,\text{m}}{\rho \pi d^2} = \frac{4 \,\text{m}}{\pi \,\mu d} = \frac{4 \times 0.02}{\pi \times 0.002 \times 0.02} = 636.62
$$

$$
18. (a)
$$

when bottom starts exposing

Apply forced vortex motion equation at points (1) and (2)

$$
\frac{P_1}{\rho g} - \frac{(V_1)^2}{2g} + z_1 = \frac{P_2}{\rho g} - \frac{(V_2)^2}{2g} + z_2
$$

 $\ddot{}$

$$
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0
$$

19. (d)

Refer figure,

Depth of centre of gravity,

$$
\bar{x}
$$
 = $h - \frac{4R}{3\pi} = 4 - \frac{4 \times 1}{3 \times \frac{22}{7}} = 3.576 \text{ m}$

21. (c)

As

In *x*-direction, $u = \frac{-x}{x^2 + x^2}$

$$
\frac{\partial u}{\partial x} = \frac{-\left(x^2 + y^2\right) + 2x^2}{\left(x^2 + y^2\right)^2} = \frac{x^2 - y^2}{\left(x^2 + y^2\right)^2}
$$

and,

In y-direction,
\n
$$
v = \frac{-y}{x^2 + y^2}
$$
\n
$$
\frac{\partial v}{\partial y} = \frac{-\left(x^2 + y^2\right) + 2y^2}{\left(x^2 + y^2\right)^2} = \frac{\left(y^2 - x^2\right)}{\left(x^2 + y^2\right)^2}
$$

−

Continuity equation

$$
\Rightarrow \qquad \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} = 0
$$

22. (b)

A velocity potential is a scalar function used in potential flow theory.

23. (b)

$$
F_v = \gamma \times \frac{1}{2} \times \frac{\pi D^2}{4} \times 1
$$

$$
F_v = 10 \times \frac{1}{2} \times \frac{\pi (2)^2}{4} \times 1 = 15.7 \text{ kN/m}
$$

24. (b)

$$
D_i = 6 \times 10^{-2} \text{ m}
$$

$$
D_f = 6.9 \times 10^{-2} \text{ m}
$$

As soap bubble has two surfaces,

Therefore total change in surface area =
$$
2\left[4\pi \left(R_f^2 - R_i^2\right)\right] = 2\left[\pi \left(D_f^2 - D_i^2\right)\right]
$$

= 2 (0.003647) = 7.294 × 10⁻³ m²
Work input required, $W = \sigma \times \Delta A = 0.039 \times 7.294 \times 10^{-3}$
= 2.845 × 10⁻⁴ Joule

25. (b)

Velocity of air in pitot tube is

$$
V = c\sqrt{2gh}
$$

\n
$$
h = x\left(\frac{S_m}{S} - 1\right) = 12 \times 10^{-3} \left(\frac{1}{1.2 \times 10^{-3}} - 1\right)
$$

\n
$$
h = 9.988 \text{ m}
$$

\n
$$
V = \sqrt{2 \times 9.81 \times 9.988} \approx 14 \text{ m/s}
$$

26. (b)

Conservation of mass,

$$
\dot{m}_{in} - m_{out} = \left. \frac{d\dot{m}}{dt} \right|_{\text{tank}}
$$
\n
$$
\Rightarrow \qquad \rho A V_1 - \rho A V_2 = \rho \times \frac{\pi}{4} D^2 \times \frac{dh}{dt}
$$
\n
$$
\Rightarrow \qquad (0.12)^2 \times [2.5 - 1.9] = (0.75)^2 \times \frac{dh}{dt}
$$
\n
$$
\Rightarrow \qquad \frac{dh}{dt} = 0.01536 \text{ m/s}
$$

So, time required to fill remaining tank,

$$
t = \frac{1 - 0.3}{0.01536}s
$$
\n
$$
\Rightarrow \qquad t = 45.57s
$$

Minor loss due to sudden expansion from 6 cm diameter pipe to 12 cm is given by

$$
(h_f)_{\text{expansion}} = \frac{V_1^2}{2g} \left[1 - \frac{A_1}{A_2} \right]^2
$$

= $\frac{V_1^2}{2g} \times \left[1 - \frac{d_1^2}{d_2^2} \right]^2 = \frac{V_1^2}{2g} \times \left(1 - \left(\frac{1}{2} \right)^2 \right)^2 = \frac{9}{16} \left(\frac{V_1^2}{2g} \right)$

28. (d)

Projected area
$$
(A_p) = l \times d
$$

\n
$$
= 1 \times 0.05 = 0.05 \text{ m}^2
$$
\nTotal drag, $F_D = C_d \times \frac{1}{2} \rho u_0^2 \times A_p$

\n
$$
= 1.25 \times \left[\frac{1}{2} \times 1.2 \times 0.2^2 \right] \times 0.05
$$
\n
$$
= 1.5 \times 10^{-3} \text{ N}
$$
\nShear drag = 0.18 × $\left[\frac{1}{2} \times 1.2 \times 0.2^2 \right] \times 0.05$

\n
$$
= 0.216 \times 10^{-3} \text{ N}
$$
\nTotal drag = Shear drag + Pressure drag

\n
$$
1.5 \times 10^{-3} = 0.216 \times 10^{-3} + \text{Pressure drag}
$$
\nPressure drag = 1.284 × 10⁻³ N

29. (b)

The frontal area of a sphere is $A = \frac{\pi D^2}{4}$ $\frac{D^2}{4}$.

The drag force acting on the balloon is

$$
F_D = C_D A \frac{\rho V^2}{2} = (0.2) \left[\frac{\pi (7)^2}{4} \right] \frac{(1.20) \left(\frac{40 \times 5}{18} \right)^2}{2} = 570.14 \text{ N}
$$

Acceleration in the direction of the winds

$$
a = \frac{F_D}{m} = \frac{570.14}{350} = 1.63 \text{ m/s}^2
$$

As per given data:

$$
u^* = \frac{u}{U} \text{ and } y^* = \frac{y}{\delta}
$$

$$
dy^* = \delta^{-1} dy
$$

The given parabolic velocity distribution and the expression for the displacement thickness can then be expressed as

$$
u^* = 2y^* - y^{*2}
$$
, and $\delta^* = \delta \int_0^1 (1 - u^*) dy^*$

Combining these equations gives,

$$
\delta^* = \delta \int_0^1 (1 - 2y^* + y^{*2}) dy^*
$$

$$
\delta^* = \delta \left[y^* - y^{*2} + \frac{1}{3} y^{*3} \right]_0^1
$$

$$
\delta^* = \frac{1}{3} \delta
$$

$$
\frac{\delta^*}{\delta} = \frac{1}{3}
$$

TELE