SI.: 01IGCE_GHIJ_06092024										
ERSS MADE EASS India's Best Institute for IES, GATE & PSUs										
Delhi Bhopal Hyderabad Jaipur Pune Kolkata Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612										
IRRIGATION ENGINEERING										
			CIVIL E	ENC	GINEEF	RIN	G	_		
	Date of Test : 06/09/2024									
AN	SWER KEY	>								
1.	(c)	7.	(a)	13.	(a)	19.	(c)	25.	(b)	
1. 2.	(c) (b)	7. 8.	(a) (c)	13. 14.	(a) (b)	19. 20.	(c) (b)	25. 26.	(b) (a)	
1. 2. 3.	(c) (b) (c)	7. 8. 9.	(a) (c) (c)	13. 14. 15.	(a) (b) (b)	19. 20. 21.	(c) (b) (b)	25. 26. 27.	(b) (a) (a)	
1. 2. 3. 4.	(c) (b) (c) (d)	7. 8. 9. 10.	(a) (c) (c) (c)	13. 14. 15. 16.	(a) (b) (b) (c)	19. 20. 21. 22.	(c) (b) (d)	25. 26. 27. 28.	(b) (a) (a) (c)	
1. 2. 3. 4. 5.	(c) (b) (c) (d) (b)	7. 8. 9. 10. 11.	(a) (c) (c) (c) (b)	 13. 14. 15. 16. 17. 	(a) (b) (b) (c) (c)	 19. 20. 21. 22. 23. 	(c) (b) (d) (b)	 25. 26. 27. 28. 29. 	(b) (a) (a) (c) (a)	

DETAILED EXPLANATIONS

1. (c)

2. (b)

SAR =
$$\frac{Na^{+}}{\sqrt{\frac{Ca^{+2} + Mg^{+2}}{2}}}$$

SAR = $\frac{24}{\sqrt{\frac{6+3.68}{2}}} = \frac{24}{2.2} = 10.9$

If SAR is between 10 to 18 then it is classified as medium sodium water and is represented by S2.

3. (c)

The duty at the head of water-course i.e. at the outlet.

7. (a)

The downstream profile has following general equation

$$x^n = kH^{n-1} \times y$$

Slope of upstream face of spillway is vertical then

$$k = 2 \text{ and } n = 1.85$$

 $x^{1.85} = 2H^{1.85-1} \times y$
 $x^{1.85} = 2H^{1.85} y$

9. (c)

The annual intensity of irrigation is the sum total of intensities of irrigation of all the seasons of the year.

Intensity of irrigation for Kharif = 100 - 76 = 24%

Intensity of irrigation of rabi season = 54%

 \therefore Annual intensity of irrigation = 24 + 54 = 78%

10. (c)

11. (b)

For the case of horizontal impervious floor with cut-off at the downstream end, the exit gradient is given by,

13.

14.

$$C_{E} = \frac{H}{d} \frac{1}{\pi\sqrt{\lambda}}$$

$$\lambda = \frac{1 + \sqrt{1 + \alpha^{2}}}{2} \qquad \left(\alpha = \frac{b}{d}\right)$$
Given data:

$$B = 16 + 4 + 25 = 45 \text{ m}, d = 10 \text{ m}, H = 120 - 102 = 18 \text{ m}$$

$$\alpha = \frac{45}{10} = 4.5 \text{ m}$$

$$\lambda = \frac{1 + \sqrt{1 + 4.5^{2}}}{2} = 2.805$$

$$G_{E} = \frac{H}{d} \frac{1}{\pi\sqrt{\lambda}}$$

$$= \frac{120 - 102}{10} \times \frac{1}{\pi\sqrt{2.805}}$$
(a)
A rea of agricultural land, $A = 500 \text{ ha}$
Base period of crop, $B = 100 \text{ days}$
Total depth of water required by crop = 130 cm
Depth of rainfall, $P = 10 \text{ cm}$
Net depth of water required, $\Delta = 130 - 10 = 120 \text{ cm}$
 \because

$$\Delta = 8.64 \times \frac{B}{D}$$

$$\Rightarrow \qquad D = 8.64 \times \frac{B}{\Delta}$$

$$\Rightarrow \qquad D = 8.64 \times \frac{B}{\Delta}$$

$$\Rightarrow \qquad D = 8.64 \times \frac{B}{\Delta}$$
(b)

$$[5x + 1]$$

$$SAR = \frac{\lfloor Na^{+} \rfloor}{\sqrt{\lfloor Ca^{2+} \rfloor + \lfloor Mg^{2+} \rfloor}}$$

[] in terms of milliequivalents

$$[Na^{+}] = \frac{\text{Weight}}{\text{Equivalent weight}} = \frac{250}{\frac{23}{1}} = 10.869 \text{ meq.}$$
$$[Ca^{+2}] = \frac{100}{\frac{40}{2}} = 5 \text{ meq.}$$

$$[Mg^{2+}] = \frac{35}{\frac{24}{2}} = 2.917 \text{ meq.}$$

SAR = $\frac{10.869}{\sqrt{\frac{5+2.917}{2}}} = 5.463 \approx 5.46$

15. (b)

Normal scour depth
$$R = 1.35 \left(\frac{q^2}{f}\right)^{1/3} = 1.35 \times \left(\frac{9^2}{1}\right)^{1/3} = 1.35 \left(3^{4/3}\right) = 5.84 \text{ m}$$

16. (c)

For elementary profile, $B = \frac{H}{\sqrt{S_c - C}}$

When uplift is ignored C = 0

$$= 36\sqrt{2.56} = 57.6 \text{ m}$$

 $=\frac{H}{\sqrt{S_c}}$

Η

:. Maximum allowable height = 57.6 m.

So, only (c) is correct.

17. (c)

 \Rightarrow

NIR =
$$C_u - P_{eff}$$

 $C_u = 0.5(FC - PWP)\frac{\gamma_d d}{\gamma_w} = 0.5(0.25 - 0.15) \times \frac{16}{10} \times 1000 = 80 \text{ mm}$

NIR =
$$80 - 40 = 40 \text{ mm}$$

18. (c)

:.

The limiting height of a low concrete gravity dam considering uplift force is given by

$$H = \frac{f}{\gamma(s - c + 1)}$$

$$f = 4.5 \text{ MPa}$$

$$\gamma = 9.81 \text{ kN/m}^3$$

$$S = 2.5$$

$$C = 0.6$$

$$H = \frac{4.5}{9.81(2.5 - 0.6 + 1)}$$

$$H = \frac{2.8 \times 10^3}{9.81 \times 2.9} = 98.42 \text{ m}$$

Outlet index for orifice type outlet
$$=\frac{1}{2}$$

Channel index $=\frac{5}{3}$
Setting $=\frac{\text{Outlet index}}{\text{Channel index}}=\frac{1/2}{5/3}=0.3$

20. (b)

21. (b)

For no tension
$$b = \frac{H}{\sqrt{S-C}}$$

Since $C = 0$ (No uplift force)
 $b = \frac{H}{\sqrt{S}}$
 $25 = \frac{H}{\sqrt{2.56}}$
 $H = 25 \times 1.6 = 40$ m

22. (d)

Net irrigation requirement = Consumptive use - Effective rainfall

Consumptive use = $0.5 \times (0.2 - 0.1) \times \frac{15}{10} \times 1000 = 75$ mm Effective rainfall = 50 mm N/R = 75 - 50 = 25 mm

23. (b)

:.

Field capacity is given by,

FC = Weight of water contained in certain volume of soil Weight of the same volume of dry soil

 \Rightarrow

$$FC = \frac{\gamma_w}{\gamma_d} \times n$$

 \Rightarrow

$$\frac{\gamma_d}{\gamma_w} = \frac{n}{FC} = \frac{0.36}{0.35} = 1.03$$

Maximum quantity of water stored between field capacity (FC) and permanent wilting point,

$$d = \frac{\gamma_d}{\gamma_w} \times d \times (FC - \phi)$$

= 1.03 × 0.56 × (0.35 - 0.15)
= 0.1154 m = 11.54 cm \approx 11.5 cm

24. (a)

For a trapezoidal section, we have

	Α	=	$bd + d^2 (\theta + \cot \theta)$
	Р	=	$b + 2d (\theta + \cot \theta)$
	Side slope	=	1.5 H : 1 V
	cot θ	=	$\frac{1.5}{1}$
.:.	θ	=	0.59 rad = 33.69°
	R	=	$\frac{A}{P} = \frac{bd + d^2 \left(\theta + \cot \theta\right)}{b + 2d \left(\theta + \cot \theta\right)}$
\Rightarrow	R	=	$\frac{(45 \times 2.5) + 2.5^2 (0.59 + 1.5)}{45 + 2 \times 2.5 (0.59 + 1.5)}$
\Rightarrow	R	=	2.26 m
(b)			

25. (b)

Bligh's theory

Total creep length = $2 \times 6 + 25 + 2 \times 8 = 53$ m Length of creep upto $B = 2 \times 6 + 12 = 24$ m

Head loss upto
$$B = \frac{5}{53} \times 24$$

Head available at $B = 5 - \frac{5}{53} \times 24 = 2.736 \text{ m}$ Uplift pressure $= \gamma_w h$ $= 9.81 \times 2.736$ $= 26.84 \text{ kN/m}^2 \simeq 26.8 \text{ kN/m}^2$

26. (a)

Height of dam = 90 m

$$S_c = 2.4$$

 $C = 0.72$
 $\mu = 0.6$

Case-1: Consider no tension criterion.

Width of dam,
$$B_{\min} = \frac{H}{\sqrt{S_c - C}} = \frac{90}{\sqrt{2.4 - 0.72}} = 69.437 \text{ m}$$

Case-2: Consider no sliding criterion

$$B_{\min} = \frac{H}{\mu(S_c - C)} = \frac{90}{0.6(2.4 - 0.72)} = 89.286 \text{ m}$$

Feasible or minimum width that shall be provided is max (69.437 m, 89.286 m) :. $B_{\rm min} = 89.286$ m $\simeq 89.3$ m

27. (a)

Given: Area of strip,	$A = 0.06$ hectare = 0.06×10^4 m ²
Discharge used for irrigation,	$Q = 0.05 \text{ m}^3/\text{sec}$
Infiltration capacity,	$f = 3 \mathrm{cm/hr}$
Average depth of flow,	$y = 12 \mathrm{cm}$
We know that,	$t = 2.3 \frac{y}{f} \log_{10} \left(\frac{Q}{Q - fA} \right)$
\Rightarrow	$t = 2.3 \times \frac{0.12}{0.03} \log_{10} \left(\frac{0.05}{0.05 - \frac{0.03}{3600} \times 600} \right)$
\Rightarrow	t = 0.42 hr
\Rightarrow	t = 25.2 minutes

28. (c)

As the reservoir is empty.

 \therefore Resultant of force will be near to the heel.

$$\therefore \qquad (P)_{\text{heel}} = \frac{\Sigma w}{b} \left(1 + \frac{6e}{b} \right)$$
$$= \frac{420}{3.6} \left(1 + \frac{6 \times 0.6}{3.6} \right)$$
$$= 233.33 \text{ kN/m}^2 \text{ (Compressive)}$$

29. (a)

When the area is such that the seasonal water requirement is low, such as hear the coasts.

30. (a)

GCA = 6000 hectares
CCA =
$$6000 \times \frac{80}{100} = 4800$$
 hectares

Area to be irrigated in Rabi season

=
$$4800 \times \frac{50}{100} = 2400$$
 hectares

Area of irrigated in Kharif season = $4800 \times \frac{25}{100} = 1200$ hectares

Water required at the head of the distributary to irrigate

Rabi area =
$$\frac{2400}{2000} = 1.2 \text{ m}^3/\text{s}$$

Water required at the head of the distributary to irrigate

Kharif area =
$$\frac{1200}{900} = 1.33 \text{ m}^3/\text{s}$$

Thus, the requirement in Kharif season is $1.33 \text{ m}^3/\text{s}$ and that in Rabi season is $1.2 \text{ m}^3/\text{s}$. The required discharge is maximum of the two i.e. $1.33 \text{ m}^3/\text{s}$.

