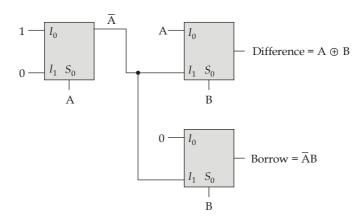


Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

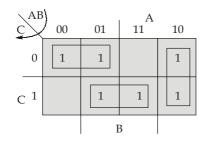
DIGITAL LOGIC

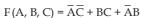

COMPUTER SCIENCE & IT

Date of Test: 16/09/2024

ANSWER KEY >

1.	(c)	7.	(c)	13.	(a)	19.	(b)	25.	(d)
2.	(a)	8.	(a)	14.	(b)	20.	(a)	26.	(b)
3.	(b)	9.	(a)	15.	(d)	21.	(d)	27.	(d)
4.	(b)	10.	(d)	16.	(d)	22.	(a)	28.	(a)
5.	(c)	11.	(c)	17.	(d)	23.	(b)	29.	(c)
6.	(c)	12.	(c)	18.	(a)	24.	(b)	30.	(a)


- 1. (c)
- 2. (a)



3. (b)

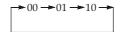
Example:

$$F(A, B, C) = \sum m(0, 2, 3, 4, 5, 7)$$

C	00	01	11 A	10	
0	1	1		1	
C 1		1	1	1	
		1	L З		

 $F(A, B, C) = \overline{B}\overline{C} + \overline{A}B + AC$

F(A, B, C) is having cyclic PI K-map and it is having '2' minimal forms.


In general, based on above example when the Boolean function is having cyclic prime implicants K-map it will be having 2 minimal forms.

4. (b)

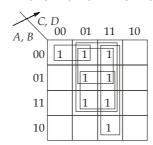
The truth table for the circuit is obtained below:

Presen	t state	FF is	nput	Next	state
Q_A	Q_B	$T_A (Q_A + Q_B)$	$(\overline{Q}_A + Q_B)$	Q_A^+	Q_B^+
0	0	0	1	0	1
0	1	1	1	1	0
1	0	1	0	0	0
0	0	0	1	0	1

So, the counter counts the sequence of 3 states as

Hence, the circuit is of a MOD-3 counter.

5. (c)


2's complement representation of -29 is 11100011.

1	0	-1
1	1	0
0	1	+1
0	0	0
0	0	0
1	0	-1
1	1	0
1	1	0

Recorded pair is : 00 - 100 + 10 - 1.

6. (c)

$$f(A, B, C, D) = BD + A'B'C' + ACD + B'CD$$

(5, 7, 13, 15) (0, 1) (11, 15) (3, 11)

$$f(A, B, C, D) = \sum m(0, 1, 3, 5, 7, 11, 13, 15)$$

= BD + CD + A'D + A'B'C'

7. (c)

$$(11X1Y)_8 = (12C9)_{16}$$

 $001001 \times 001 Y = 0001 \quad 0010 \quad 1100 \quad 1001$

These are missing in left side. Hence X = 3 and Y = 1.

So,
$$X + Y = 3 + 1 = 4$$

8. (a)

Characteristic equation for J-K flip flop:

$$Q_{n+1} = J_n Q_n' + K_n' Q_n$$

Characteristic equation for S-R flip flop:

$$Q_{n+1} = S_n + R'_n Q_n$$

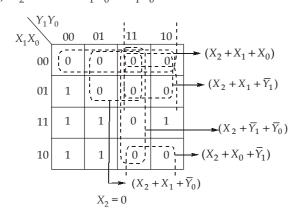
9. (a)

Note: Clock is negative edge triggered, so when clock goes from $1 \rightarrow 0$ then output is changes.

CLK	Q_1 $D_1 = Z$	Q_2 $D_2 = Q_1$	Q_3 $D_3 = Q_2$	Q_4 $D_4 = Q_3$	Z
	1	0	1	0	0
1	0	1	0	1	1
2	1	0	1	0	0
3	0	1	0	1	1

CS

Hence option (a) is correct wave form for 101.


10. (d)

To generate length S we need log_2S flip-flop.

11. (c)

Now, X > Y if

- (a) $X_2 = 1$
- (b) $X_2 = 0$ and $X_1 X_0 > Y_1 Y_0$

$\langle Y_1 \rangle$	0			
X_1X_0	00	01	11	10
00	1	1	1	1
01	1	1	1	1
11	1	1	1	1
10	1	1	1	1

 $X_2 = 1$

12. (c)

$$F = A(\overline{A} + B)(\overline{A} + B + \overline{C})$$

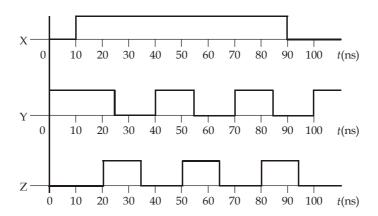
$$= (A + B\overline{B} + C\overline{C})(\overline{A} + B + C\overline{C})(\overline{A} + B + \overline{C})$$

$$= (A + B + C)(A + B + \overline{C})(A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + C)(\overline{A} + B + \overline{C})$$

$$POS (F) = M_{0'} M_{1'} M_{2'} M_{3'} M_{4'} M_{5}$$

$$= \Pi(0, 1, 2, 3, 4, 5)$$

$$SOP (F) = (0, 1, 2, 3, 4, 5, 6, 7) - (0, 1, 2, 3, 4, 5)$$


$$= \Sigma(6, 7)$$

$$F = \Sigma(6, 7) \text{ and } F = \Pi(0, 1, 2, 3, 4, 5)$$

13. (a)

So,

So,

Level changes at points are t = 20, 35, 50, 65, 80, 95 ns

14. (b)

$$[D' + AB' + A'C + AC'D + A'C'D]'$$

$$= [D' + AC'D + AB' + A'C + A'C'D]'$$

$$= [D' + AC' + AB' + A' [C + C'D]]'$$

$$= [D' + AC' + AB' + A' [C + D]]'$$

$$= [D' + AC' + AB' + A' [C + D]]'$$

$$= [D' + AC' + AB' + A'C + A'D]'$$

$$(: D' + A'D = D' + A')$$

= ABCD

$$= [D' + A' + AC' + AB' + A'C]'$$

$$(: A' + A'C = A')$$

 $(: A' + AC' + AB' = A' + A(C' + B') = A' + C' + B')$
 $= [D' + A' + C' + B']'$

Hence, only 1 minterm is required.

15. (d) Let,

Number of AND gates required X = 6

Number of one bit full adders required Y = 3

$$X + Y = 6 + 3 = 9$$

16. (d)

Output of ExOR Gate = $b_i \oplus b_{i+1}$

Initially Q = 0 assume

So, After 1 clock,
$$Z = b_7 \oplus b_0$$

After 2 clock,
$$Z = b_7 \oplus b_6$$

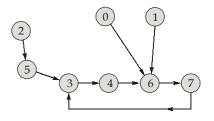
After 3 clock,
$$Z = b_6 \oplus b_5$$

After 4 clock,
$$Z = b_5 \oplus b_4$$

After 5 clock,
$$Z = b_4 \oplus b_3$$

After 6 clock,
$$Z = b_3 \oplus b_2$$

After 7 clock,
$$Z = b_2 \oplus b_1$$


After 8 clock,
$$Z = b_1 \oplus b_0$$

Which is same as Binary to gray code converter.

17. (d)

Test for Lockout

Pre	esent S	tate		Pre	esent	Inp	ıt		N	lest Sta	ite
Q_2	Q_1	Q_0	J ₂ I	K ₂	J_1	K_1	Jo	K_0	Q_2	Q_1	Q_0
0	0	0	1	0	1	1	0	1	1	1	0
0	0	1	1	1	1	1	0	1	1	1	0
0	1	0	1	0	1	1	1	1	1	0	1
1	0	1	1	1	1	0	0	0	0	1	1

Hence, the counter does not enter into lockout state.

18. (a)

After 1st clock tick:

$$x_0^+ = x_0$$

$$x_1^+ = x_0 \oplus x_1$$

$$x_2^+ = (x_0 + x_1) \oplus x_2$$

$$x_3^+ = (x_0 + x_1 + x_2) \oplus x_3$$

After 2nd clock tick:

$$(x_0^+)^+ = x_0^+ = x_0$$

$$(x_1^+)^+ = x_0^+ \oplus x_1^+ = x_0 \oplus x_0 \oplus x_1 = 0 \oplus x_1 = x_1$$

$$(x_2^+)^+ = (x_0^+ + x_1^+) \oplus x_2^+ = (\underbrace{x_0 + (x_0 \oplus x_1)}_{A}) \oplus (\underbrace{x_0 + x_1}_{B}) \oplus x_2$$

		A	В	
x_1	x_0	$(x_0 + (x_0 \oplus x_1))$	$(x_0 \oplus x_1)$	A⊕B
0	0	0	0	0
0	1	1	1	0
1	0	1	1	0
1	1	1	1	0

$$= 0 \oplus x_2 = x_2$$

 $= 0 \oplus x_2 = x_2$ [By using above truth table]

$$(x_3^+)^+ = (x_0^+ + x_1^+ + x_2^+) \oplus x_3^+$$

= x_3 only

So, after 2 clock tick Register R contain X only.

19. (b)

We know that, for Mod-N counter $f_o = \frac{f_i}{N}$

$$f_o$$
 = Output frequency = 8 kHz
 f_i = Input frequency = 256 kHz

Mod N =
$$\frac{f_i}{f_0}$$

= $\frac{256 \text{ kHz}}{8 \text{ kHz}} = 32$

20. (a)

- 21. (d)
 - ullet S_1 is incorrect, as mentioned in question would required five 4X1 MUX instead of three.
 - S_2 is incorrect, as it is not always the case. For example, the function $f(x, y, z) = \Sigma_m(2, 4, 5, 6)$ can have different PI when group differently in K-map.
- **22. (a)** Truth table for BCD to excess-3 code output:

Decimal		Inp	out			Out	put		Decimal
Value	Р	Q	R	S	Р	Q	R	S	Value
0	0	0	0	0	0	0	1	1	3
1	0	0	0	1	0	1	0	0	4
2	0	0	1	0	0	1	0	1	5
3	0	0	1	1	0	1	1	0	6
4	0	1	0	0	0	1	1	1	7
5	0	1	0	1	1	0	0	0	8
6	0	1	1	0	1	0	0	1	9
7	0	1	1	1	1	0	1	0	10
8	1	0	0	0	1	0	1	1	11
9	1	0	0	1	1	1	0	0	12

K-map for P: $f(P, Q, R, S) = \Sigma m(5, 6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15)$

$$= P + QS + QR$$
$$= P + Q(S + R)$$

23. (b)

$$Y = \overline{S}_{1}\overline{S}_{0}I_{0} + \overline{S}_{1}S_{0}I_{1} + S_{1}\overline{S}_{0}I_{2} + S_{1}S_{0}I_{3}$$

$$I_{0} = I_{3} = S_{1} \text{ and } I_{1} = I_{2} = S_{0}$$

$$Y = \overline{S}_{1}\overline{S}_{0}S_{1} + \overline{S}_{1}S_{0}S_{0} + S_{1}\overline{S}_{0}S_{0} + S_{1}S_{0}S_{1}$$

$$= \overline{S}_{1}S_{0} + S_{1}S_{0} = S_{0}$$

So, whenever $S_0 = B$, output (Y) = B

So, option (b) is correct.

24. (b)

We consider the last full adder far worst case delay.

Time after which output carry bit becomes available from the last full adder.

= total number of full address × carry propagation delay of full adder.

$$= 16 \times 12 \text{ ns} = 192 \text{ ns}$$

Time after which output sum bit becomes available from the last full adder.

- = time taken for its carry in to become available + sum propagation delay of full adder.
- = {total number of full address before last full adder × carry propagation delay of full adder} + sum propagation delay of full adder.

$$= \{15 \times 12 \text{ ns}\} + 15 \text{ ns} = 195 \text{ ns}$$

25. (d)

$$A \oplus B = 10101101 \oplus 01101100 = 11000001$$

Now convert above binary code to gray code.

Gray of (11000001) is (10100001),

$$(10100001)_2 = (161)_{10}$$

26. (b)

CLK	Q_0	Q_1	Q_2	$J_0 K_0$	$J_1 K_1$	$J_2 K_2$	\overline{Q}_1 $\overline{\zeta}$	\overline{Q}_2 (2 input gate)
0	0	0	0	1 1	1 1	1 1	1	1
1	1	0	0	1 1	1 1	1 1	1	1
2	0	1	0	1 1	1 1	1 1	0	1
3	1	1	0	1 1	1 1	1 1	0	1
4	0	0	1	1 1	1 1	1 1	1	0
5	1	0	1	1 1	1 1	1 1	1	0
6	0	1	1	1 1	1 1	1 1	0	0

Now if we will use OR gate then the flip flop will be CLR and we will get mod-6 counter from (0 to 5).

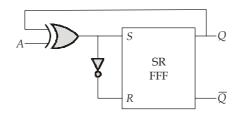
27. (d)

All the above statements are correct.

28. (a)

Clock	S.I = Y	Q_3	Q_2	Q_1	Q_0
		0	0	0	0
1	1	1	0	0	0
2	1	1	1	0	0
3	1	1	1	1	0
4	1	1	1	1	1
5	0	0	1	1	1

Total 5 clock cycles are required.


29. (c)

Output of MUX =
$$\bar{A}Q + A\bar{Q}$$

Output of decoder,
$$S = \overline{A}Q + A\overline{Q}$$

$$R = \overline{\overline{A}Q + A\overline{Q}}$$

So,

In SRFF

$$Q_{n+1} = S + \overline{R}Q_n$$

$$= (A \oplus Q_n) + \left(\overline{\overline{A \oplus Q_n}}\right)Q_n$$

$$= A \oplus Q_n$$

So, Q_{n+1} is excitation equation of T-flip flop. Thus, the circuit will function as T-flip flop.

30. (a

Johnson counter with n-flip flops has 2n state.

Here,
$$n = 4$$

So total state is = 8

$$= n \times 2 + 0.1 \text{ ms}$$

= $8 \times 2 + 0.1 = 16.1 \text{ ms}$