

DETAILED EXPLANATIONS

- **1. (c)**
- **2. (a)**

3. (b)

Example: F(A, B, C) = $\Sigma m(0, 2, 3, 4, 5, 7)$

F(A, B, C) is having cyclic PI K-map and it is having '2' minimal forms. In general, based on above example when the Boolean function is having cyclic prime implicants K-map it will be having 2 minimal forms.

4. (b)

The truth table for the circuit is obtained below:

So, the counter counts the sequence of 3 states as

 $\div 00 \rightarrow 01 \rightarrow 10 \rightarrow$

Hence, the circuit is of a MOD-3 counter.

5. (c)

2's complement representation of –29 is 11100011.

6. (c)

$$
f(A, B, C, D) = BD + A'B'C' + ACD + B'CD
$$

(5, 7, 13, 15) (0, 1) (11, 15) (3, 11)

f(*A*, *B*, *C*, *D*) = ∑*m*(0, 1, 3, 5, 7, 11, 13, 15) = *BD* + *CD* + *A*′*D* + *A*′*B*′*C*′

7. (c)

$$
(11X1Y)_8 = (12C9)_{16}
$$

001001 X 001 Y = 0001 0010 1100 1001

These are missing in left side. Hence $X = 3$ and $Y = 1$. So, $X + Y = 3 + 1 = 4$

8. (a)

Characteristic equation for J-K flip flop:

$$
Q_{n+1} = J_n Q_n' + K_n' Q_n
$$

Characteristic equation for S-R flip flop:

$$
Q_{n+1} = S_n + R'_n Q_n
$$

9. (a)

Note: Clock is negative edge triggered, so when clock goes from $1 \rightarrow 0$ then output is changes.

Output *Z* for next 3 clock cycles = 101. Hence option (a) is correct wave form for 101.

10. (d)

To generate length S we need $\log_2 S$ flip-flop.

11. (c)

Now, *X* > *Y* if (a) $X_2 = 1$ (b) $X_2 = 0$ and $X_1 X_0 > Y_1 Y_0$ 00 $\begin{array}{c|c|c|c|c} 01 & 11 & 10 \\ \hline \hline \end{array}$ $Y_1 Y_0$ 01 11 10 00 $\begin{matrix} 0 \\ 0 \end{matrix}$ 1 1 1 1 $1 \mid \frac{1}{0}$ 0 <u>|| 0 || 0</u> 0 $\begin{matrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{matrix}$ $\begin{array}{|c|c|c|c|c|c|c|c|} \hline 0 & 1 & 1 \end{array}$ 0 $\begin{bmatrix} 0 \end{bmatrix}$ $X_1 X_0$ $(X_2 + \bar{Y}_1 + \bar{Y}_0)$ $(X_2 + X_1 + \overline{Y}_1)$ $(X_2 + X_1 + \overline{Y}_0)$ $(X_2 + X_1 + X_0)$ $X_2 = 0$ *X*₂ = 1 $(X_2 + X_0 + \overline{Y}_1)$

$\sqrt{Y_1Y_0}$											
X_1X_0	00	01	11	10							
$\overline{00}$	1	1	$\,1\,$	$\mathbf{1}$							
01	1	1	$\mathbf{1}$	1							
11	$\mathbf{1}$	1	$\mathbf{1}$	$\mathbf{1}$							
10	1	1	1	1							

12. (c)

$$
F = A(A + B)(A + B + C)
$$

\n
$$
= (A + B\overline{B} + C\overline{C})(\overline{A} + B + C\overline{C})(\overline{A} + B + \overline{C})
$$

\n
$$
= (A + B + C)(A + B + \overline{C})(A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + C)(\overline{A} + B + \overline{C})
$$

\n
$$
POS (F) = M_0, M_1, M_2, M_3, M_4, M_5
$$

\n
$$
= \Pi(0, 1, 2, 3, 4, 5)
$$

\nSo,
\n
$$
SOP (F) = (0, 1, 2, 3, 4, 5, 6, 7) - (0, 1, 2, 3, 4, 5)
$$

\n
$$
= \Sigma(6, 7)
$$

\nSo,
\n
$$
F = \Sigma(6, 7) \text{ and } F = \Pi(0, 1, 2, 3, 4, 5)
$$

13. (a)

Level changes at points are *t* = 20, 35, 50, 65, 80, 95 ns

14. (b)

$$
[D' + AB' + A'C + AC'D + A'C'D]'
$$

\n
$$
= [D' + AC'D + AB' + A'C + A'C'D]'
$$

\n
$$
= [D' + AC' + AB' + A' [C + C'D]]'
$$

\n
$$
= [D' + AC' + AB' + A' [C + D]]'
$$

\n
$$
= [D' + AC' + AB' + A'C + A'D]'
$$

\n
$$
= [D' + AC' + AB' + A'C' + A'D]'
$$

\n
$$
= [D' + A' + AC' + AB' + A'C]'
$$

\n
$$
= [D' + A' + C' + B')
$$

\n
$$
= [D' + A' + C' + B']'
$$

\n
$$
= ABCD
$$

Hence, only 1 minterm is required.

15. (d)

Let,

Number of AND gates required $X = 6$ Number of one bit full adders required $Y = 3$ $X + Y = 6 + 3 = 9$

16. (d)

Output of ExOR Gate = $b_i \oplus b_{i+1}$ Initially $Q = 0$ assume So, After 1 clock, $Z = b_7 \oplus b_0$ After 2 clock, $Z = b_7 \oplus b_6$ After 3 clock, $Z = b_6 \oplus b_5$ After 4 clock, $Z = b_5 \oplus b_4$ After 5 clock, $Z = b_4 \oplus b_3$ After 6 clock, $Z = b_3 \oplus b_2$ After 7 clock, $Z = b_2 \oplus b_1$ After 8 clock, $Z = b_1 \oplus b_0$

Which is same as Binary to gray code converter.

17. (d)

Test for Lockout

Hence, the counter does not enter into lockout state.

18. (a)

After 1st clock tick:

$$
x_0^+ = x_0
$$

\n
$$
x_1^+ = x_0 \oplus x_1
$$

\n
$$
x_2^+ = (x_0 + x_1) \oplus x_2
$$

\n
$$
x_3^+ = (x_0 + x_1 + x_2) \oplus x_3
$$

After 2nd clock tick:

$$
(x_0^+)^+ = x_0^+ = x_0
$$

\n
$$
(x_1^+)^+ = x_0^+ \oplus x_1^+ = x_0 \oplus x_0 \oplus x_1 = 0 \oplus x_1 = x_1
$$

\n
$$
(x_2^+)^+ = (x_0^+ + x_1^+) \oplus x_2^+ = (\underbrace{x_0 + (x_0 \oplus x_1)}_{A}) \oplus (\underbrace{x_0 + x_1}_{B}) \oplus x_2
$$

$$
(x_3^+)^+ = (x_0^+ + x_1^+ + x_2^+) \oplus x_3^+
$$

$$
= x_3
$$
 only

So, after 2 clock tick Register R contain X only.

19. (b)

We know that, for Mod-N counter $f_o = \frac{f_i}{N}$ *N*

$$
f_o
$$
 = Output frequency = 8 kHz
 f_i = Input frequency = 256 kHz

$$
Mod N = \frac{f_i}{f_0}
$$

$$
= \frac{256 \text{ kHz}}{8 \text{ kHz}} = 32
$$

20. (a)

Exponent = 1000 0101 = 133 Biased exponent = Actual exponent + Bias Actual exponent = Biased exponent – Bias $= 133 - 127 = 6$ Mantissa = 11010000000000000000000 Number = 1.1101×2^6 $= -1110100$ $= (-116)_{10}$

21. (d)

- *S*₁ is incorrect, as mentioned in question would required five 4X1 MUX instead of three.
- *S*₂ is incorrect, as it is not always the case. For example, the function $f(x, y, z) = \sum_{m}(2, 4, 5, 6)$ can have different PI when group differently in K-map.

22. (a)

Truth table for BCD to excess-3 code output:

Decimal Input					Output				Decimal
Value	Р	Q	R	S	Ρ	Q	R	S	Value
Ω	0	0	Ω	0	0	0	1	$\mathbf 1$	3
1	\mathcal{L}	0	O	1	O	1	0	0	4
$\overline{2}$	\mathcal{L}	O	1	O	0	1	0	1	5
3	O	0	1	1	O	1	1	O	6
$\overline{4}$		1	0	O	0	1	1		7
5		1	O	1	1	0	0	O	8
6		1	1	0	1	0	0	1	9
7		1	1	1	1	O	1	0	10
8	1	O	0	O	1	0	1	1	11
9				1	1	1	O	O	12

K-map for P: $f(P, Q, R, S) = \sum m(5, 6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15)$

23. (b)

$$
Y = \overline{S}_1 \overline{S}_0 I_0 + \overline{S}_1 S_0 I_1 + S_1 \overline{S}_0 I_2 + S_1 S_0 I_3
$$

\n
$$
I_0 = I_3 = S_1 \text{ and } I_1 = I_2 = S_0
$$

\nSo,
\n
$$
Y = \overline{S}_1 \overline{S}_0 S_1 + \overline{S}_1 S_0 S_0 + S_1 \overline{S}_0 S_0 + S_1 S_0 S_1
$$

 $=$ $\overline{S}_1 S_0 + S_1 S_0 = S_0$

So, whenever $S_0 = B$, output $(Y) = B$ So, option (b) is correct.

24. (b)

We consider the last full adder far worst case delay.

Time after which output carry bit becomes available from the last full adder.

 $=$ total number of full address \times carry propagation delay of full adder.

$$
= 16 \times 12 \text{ ns} = 192 \text{ ns}
$$

Time after which output sum bit becomes available from the last full adder.

= time taken for its carry in to become available + sum propagation delay of full adder.

= {total number of full address before last full adder × carry propagation delay of full adder} + sum propagation delay of full adder.

$$
= \{15 \times 12 \text{ ns}\} + 15 \text{ ns} = 195 \text{ ns}
$$

25. (d)

 $A \oplus B = 10101101 \oplus 01101100 = 11000001$

Now convert above binary code to gray code. Gray of (11000001) is (10100001),

$$
(10100001)_2 = (161)_{10}
$$

26. (b)

Now if we will use OR gate then the flip flop will be CLR and we will get mod-6 counter from (0 to 5).

27. (d)

All the above statements are correct.

28. (a)

Total 5 clock cycles are required.

29. (c)

Output of MUX = $\overline{A}Q + A\overline{Q}$ Output of decoder, $S = \overline{A}Q + A\overline{Q}$ $R = \overline{\overline{A}Q + A\overline{Q}}$

So,

In SRFF

$$
Q_{n+1} = S + \overline{R}Q_n
$$

= $(A \oplus Q_n) + (\overline{A \oplus Q_n})Q_n$
= $A \oplus Q_n$

So, Q_{n+1} is excitation equation of *T*-flip flop. Thus, the circuit will function as *T*-flip flop.

30. (a)

Johnson counter with *n*-flip flops has 2*n* state. Here, $n = 4$ So total state is $= 8$

$$
= n \times 2 + 0.1 \text{ ms}
$$

= 8 × 2 + 0.1 = 16.1 ms

REAL