

# **DETAILED EXPLANATIONS**

- 1. (c)
- 2. (d)
- 3. (c)

According to Buckingham's  $\pi$  theorem,

$$\pi$$
 terms =  $n - m$ 

$$\phi [\pi_{1'}, \pi_{2'}....] = 0$$

So, no. of independent non-dimensional groups =  $\pi$  terms.

- 4. (c)
- 5. (b)



- As pipe contracts, pressure decreases and velocity increases.
- HGL is always lower and parallel to TEL.

# 6. (d)

7. (b)

We know that Kinetic energy correction factor for laminar flow between stationary plates is 1.54 and for laminar flow through pipe is 2.0.

Ratio = 
$$\frac{1.54}{2} = 0.77$$

8. (b)

For circular cylindrical jet of liquid,

$$\Delta P = \frac{\sigma}{R}$$

$$\Rightarrow \qquad R = \frac{\sigma}{\Delta P} = \frac{73 \times 10^{-3}}{40}$$

$$= 1.825 \times 10^{-3} \text{ m} = 1.825 \text{ mm}$$

$$\therefore \qquad \text{Diameter} = 2R = 1.825 \times 2 = 3.65 \text{ mm}$$

## 9. (a)

10. (b)

Since it is a homogeneous equation so the dimensions of all the terms should be same. Hence, dimension of P = dimension of C

Dimension of pressure,  

$$P = \frac{\text{Force}}{\text{Area}}$$

$$= \frac{N}{m^2} = \frac{\text{MLT}^{-2}}{\text{L}^2}$$

$$= \frac{M}{\text{LT}^{+2}}$$

$$\therefore \qquad \text{Dimension of C} = \text{ML}^{-1} \text{T}^{-2}$$

11. (a)

From the given velocity field,

$$u = \lambda x y^3 - x^2 y$$
$$v = x y^2 - \frac{3}{4} y^4$$

For possible, steady and incompressible flow, continuity equation should be satisfied

$$\therefore \qquad \left(\frac{\partial u}{\partial x}\right) + \left(\frac{\partial v}{\partial y}\right) + \left(\frac{\partial w}{\partial z}\right) = 0$$
  
$$\Rightarrow \qquad \left(\lambda y^3 - 2xy\right) + 2xy - 3y^3 + 0 = 0$$
  
$$\Rightarrow \qquad y^3 (\lambda - 3) = 0$$
  
$$\therefore \qquad \lambda = 3$$

12. (a)

Consider an annular ring with thickness dr at radius r. Velocity variation in the gap is given as linear.

Hence the velocity at radius *r* from centre = v = wr

: Shear stress on the ring,

$$\tau = \mu \frac{du}{dy} = \mu \left( \frac{wr}{h} \right)$$

 $dF = \tau \times dA$ 

Force on the ring,

$$= \left(\frac{\mu wr}{h}\right) \times 2\pi r dr = \left(\frac{2\pi\mu w}{h}\right) r^2 dr$$
$$= F \times r$$

Torque on the ring, dT

$$= r\tau dA$$
  
=  $\left(\frac{2\pi\mu w}{h}\right)r^{2} \cdot rdr$   
=  $\left(\frac{2\pi\mu w}{h}\right)r^{3}dr$ 

## 

$$\therefore \quad \text{Total torque on disc} = \int_{0}^{R} dT = \frac{2\pi\mu w}{h} \int_{0}^{R} r^{3} dr$$
$$\Rightarrow \qquad T = \frac{2\pi\mu w}{h} \left[ \frac{r^{4}}{4} \right]_{0}^{R}$$
$$= \frac{\pi\mu w R^{4}}{2h}$$

#### (d) 13.

Given,  $\theta = 60^{\circ}$ 

Distance,

$$AC = \frac{h}{\sin 60^\circ} = \frac{2h}{\sqrt{3}}$$

The gate will start tipping about hinge B if the resultant pressure force acts at B. If the resultant pressure force passes through a point which is lying from B to C anywhere on the gate, the gate will tip over the hinge. Hence for the given position, point B becomes the centre of pressure. Depth of centre of pressure,

$$= (h - 3) m$$
 ...(i)

But  $h^*$  is also given by,  $h^* = \frac{I_G \sin^2 \theta}{A\overline{h}} + \overline{h}$ 

h\*

Taking width of gate unity, then

Area,  

$$A = AC \times 1 = \frac{2h}{\sqrt{3}} \times 1; \ \overline{h} = \frac{h}{2}$$

$$I_{G} = \frac{bd^{3}}{12} = \frac{1 \times AC^{3}}{12} = \frac{1 \times \left(\frac{2h}{\sqrt{3}}\right)^{3}}{12}$$

$$= \frac{8h^{3}}{12 \times 3 \times \sqrt{3}} = \frac{2h^{3}}{9 \times \sqrt{3}}$$

$$h^{*} = \frac{2h^{3}}{9\sqrt{3}} \times \frac{\sin^{2} 60}{\frac{2h}{\sqrt{3}} \times \frac{h}{2}} + \frac{h}{2}$$

$$\Rightarrow \qquad h^{*} = \frac{2h^{3} \times \frac{3}{4}}{9h^{2}} + \frac{h}{2} = \frac{2h}{3}$$
From (i) and (ii)  

$$h - 3 = \frac{2h}{2}$$

$$h - 3 = \frac{2h}{3}$$
$$h = 9 \text{ m}$$

 $\therefore$  Height of water required for tipping the gate = 9 m

#### 14. (b)

 $\Rightarrow$ 

Reynolds number upto which laminar boundary exists =  $2 \times 10^5$ Kinematic viscosity for air

$$v = 0.15$$
 stokes =  $0.15 \times 10^{-4}$  m<sup>2</sup>/s

...(ii)

Reynold's number, Re = 
$$\frac{\rho V x}{\mu} = \frac{V x}{v}$$

If  $\text{Re}_x = 2 \times 10^5$ , then *x* denotes the distance from the leading edge upto which laminar boundary layer exists

$$\therefore \qquad 2 \times 10^5 = \frac{10 \times x}{0.15 \times 10^{-4}}$$
$$\Rightarrow \qquad x = 0.30 \text{ m} = 300 \text{ mm}$$

For thickness of laminar boundary layer,

$$\frac{\delta}{x} = \frac{5}{\sqrt{\text{Re}_x}}$$

$$\Rightarrow \qquad \delta = \frac{5 \times x}{\sqrt{\text{Re}_x}} = \frac{5 \times 0.30}{\sqrt{2 \times 10^5}}$$

$$= 3.354 \times 10^{-3} \text{ m} = 3.354 \text{ mm}$$

15. (b)

Local velocity at a point = Average velocity

U

For a smooth or rough pipe,

$$\frac{u - \overline{U}}{V_{\star}} = 5.75 \log\left(\frac{y}{R}\right) + 3.75$$
$$\frac{\overline{U} - \overline{U}}{V_{\star}} = 5.75 \log\left(\frac{y}{R}\right) + 3.75$$
$$\log\left(\frac{y}{R}\right) = -\frac{3.75}{5.75} = -0.6521$$
$$\frac{y}{R} = 10^{-0.6521} = 0.2228$$
$$y = 0.223 R$$

## 16. (a)

$$dQ = |d\psi| = |\psi_2 - \psi_1|$$
  
At (1, 1);  
$$\psi_1 = 3 \times 1^2 \times 1 - 1^3 = 2 \text{ units}$$
  
At  $(\sqrt{3}, 1)$ ;  
$$\psi_2 = 3 \times (\sqrt{3})^2 \times 1 - 1^3 = 8 \text{ units}$$
  
So,  
$$dQ = |8 - 2|$$
  
= 6 units

## 17. (d)

Given:  $D_1 = 200$  mm,  $D_2 = 400$  mm Velocity in smaller diameter pipe,

$$V_1 = \frac{Q}{A_1} = \frac{0.250 \text{ m}^3/\text{s}}{\frac{\pi}{4} \times (0.2)^2} = 7.96 \text{ m/s}$$

Velocity in larger diameter pipe,

$$V_2 = \frac{Q}{A_2} = \frac{0.250 \text{ m}^3/\text{s}}{\frac{\pi}{4} \times (0.4)^2} = 1.99 \text{ m/s}$$

Loss of head due to sudden enlargement is given by,

$$h_L = \frac{(V_1 - V_2)^2}{2g} = \frac{(7.96 - 1.99)^2}{2g} = 1.817 \text{ m of water}$$

### 18. (b)

Pipe flow is a case of application of Reynold's model law and Weber model law is applicable in capillary rise in narrow passages.

19. (c)

When  $\frac{dh}{dx} > 0$ , it means that depth of water increases in the direction of flow. The profile of water so obtained is called back water curve.

When  $\frac{dh}{dx} < 0$ , it means that the depth of water decrease in the direction of flow. The profile of the water so obtained is called drop down curve.

## 20. (a)

Let P is the point of intersection of the two jets coming from orifice (1) and (2), such that

x = Horizontal distance of P

 $y_1$  = Vertical distance of P from orifice (1)

y = Vertical distance of P from orifice (2)



Then,

The equation of  $C_V$  is given by

For orifice (1),  $C_{V_1} = \frac{x}{\sqrt{4y_1H_1}} = \frac{x}{\sqrt{4y_1 \times 3}}$ 

For orifice (2),  $C_{V_2} = \frac{x}{\sqrt{4y_2H_2}} = \frac{x}{\sqrt{4 \times y_2 \times 5}}$ 

Since,

Hence,

 $C_{V_1} = C_{V_2}$  $\frac{x}{\sqrt{4y_1 \times 3}} = \frac{x}{\sqrt{4y_2 \times 5}}$ 

| $\Rightarrow$     | $3y_1 = 5y_2$                                |
|-------------------|----------------------------------------------|
| From (1) and (2), |                                              |
|                   | $y_2 = 3.0 \text{ m}$                        |
| So,               | $C_{V_2} = \frac{x}{\sqrt{4y_2 \times 5}}$   |
| $\Rightarrow$     | $x = 0.96 \times \sqrt{4 \times 3 \times 5}$ |
|                   | = 7.436 m                                    |

#### 21. (a)

In Venturimeter,

Here,

*.*..

Rate of flow,  

$$Q = \frac{C_d A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{2gh}$$
Here,  

$$h = 20 \left( \frac{\rho_{Hg}}{\rho_w} - 1 \right) = 20 \left( \frac{13.6 \times 10^3}{10^3} - 1 \right) = 20(13.6 - 1) = 252 \text{ cm}$$

$$\therefore$$

$$Q = \frac{0.98 \times \frac{\pi}{4} \times 30^2 \times \frac{\pi}{4} \times 15^2}{\sqrt{\left[\frac{\pi}{4} \times 30^2\right]^2 - \left[\frac{\pi}{4} \times 15^2\right]^2}} \times \sqrt{2 \times 981 \times 252}$$

$$= \frac{0.98 \times 30^2 \times \frac{\pi}{4} \times 15^2}{\sqrt{30^4 - 15^4}} \times \sqrt{2 \times 981 \times 252} = 125.76 \ lps$$

22. (c)

> Given, D = 50 mm = 0.05 mL = 1.0 m $A = L \times D = 1 \times 0.05 = 0.05 \text{ m}^2$ Projected area, Velocity of air,  $U = 0.1 \, \text{m/s}$

Total drag is given by,  $F_{DT} = C_{DT} \times A \times \frac{\rho U^2}{2}$ 

Shear drag is given by,  $F_{DS} = C_{DS} \times A \times \frac{\rho U^2}{2}$ 

Pressure drag = Total drag - Shear drag Hence,

$$= C_{DT} \times A \times \frac{\rho U^2}{2} - C_{DS} \times A \times \frac{\rho U^2}{2}$$
$$= (C_{DT} - C_{DS}) \times A \times \frac{\rho U^2}{2}$$
$$= (1.5 - 0.2) \times 0.05 \times 1.25 \times \frac{(0.1)^2}{2}$$
Pressure drag = 4.0625 × 10<sup>-4</sup> N = 0.406 kN \approx 0.41 kN

23. (d)

1 and 3 are correct

A submerged body becomes unstable if the centre of gravity is above the centre of buoyancy.

While a floating body may remain stable even if centre of gravity is above the centre of buoyancy so statement 2 is wrong.

For a submerged body if the centre of gravity coincides with the centre of buoyancy, the equilibrium is said to be neutral stability so statement 4 is wrong.

24. (a)

India's Beet Institute for IES (GATE & PSI Is

Since for flow of fluids through pipes only viscous and inertia forces predominant, Reynolds model law is the criterion for similarity. Thus

$$\left(\frac{Vd}{\upsilon}\right)_m = \left(\frac{Vd}{\upsilon}\right)_p$$

By substitution, we get

$$\frac{4 \times 150 \times 10^{-3}}{1.145 \times 10^{-6}} = \frac{V \times 75 \times 10^{-3}}{3.0 \times 10^{-6}}$$
$$V = 20.96 \text{ m/s}$$

25. (c)

Given,

...

$$K = 2500 \text{MPa}$$
  
 $\rho_{\text{surface}} = 1250 \text{ kg/m}^3$ 

We know that, 
$$K = \frac{-dP}{\frac{dV}{V}} = \frac{dP}{\frac{d\rho}{\rho_{\text{surface}}}}$$

Here,

$$d\rho = \rho_{\text{surface}} \cdot \frac{dP}{K}$$
$$d\rho = 1250 \times \frac{80}{2500}$$
$$d\rho = \frac{80}{2} = 40 \text{MPa}$$
$$\rho_{\text{final}} - \rho_{\text{surface}} = 40$$

dP = 80 - 0 = 80MPa

$$\rho_{\text{final}} = (40 + 1250) \text{ kg/m}^3 = 1290 \text{ kg/m}^3$$

26. (a)

We know that,  

$$u = -\frac{\partial \Psi}{\partial y} \text{ and } v = \frac{\partial \Psi}{\partial x}$$

$$u = -\frac{\partial (3\sqrt{2}xy)}{\partial y} = -3\sqrt{2}x$$

$$V = \frac{\partial (3\sqrt{2}xy)}{\partial x} = 3\sqrt{2}y$$
Given,  

$$\sqrt{u^2 + v^2} = 6$$

Given,

$$\sqrt{u^2 + v^2} =$$

...(ii)

$$\sqrt{\left(-3\sqrt{2}x\right)^2 + \left(3\sqrt{2}y\right)^2} = 6$$

$$\sqrt{18x^2 + 18y^2} = 6 \qquad \dots(i)$$
Given,  $\theta = 135^\circ$ 

And we know, slope of stream function i.e.

$$\tan \theta = \frac{v}{u}$$
$$\tan(135^\circ) = \frac{v}{u}$$
$$-1 = \frac{3\sqrt{2}y}{-3\sqrt{2}x}$$

$$x = y$$

By putting equation (ii) in equatio (i),

$$\sqrt{18x^2 + 18(x^2)} = 6$$

$$\sqrt{36x^2} = 6$$

$$6x = 6$$

$$x = 1$$
By equation (ii),  $y = 1$ 
So, point is (1, 1).

27. (b)

So, point is



Applying Bernaulli's equation between (1) and (2),

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + h_f$$

Here,

$$V_1 \simeq 0$$
  

$$P_1 = P_2 = 0$$
 (Gauge Pressure)  

$$z_1 = 2 \text{ m (given)}$$
  

$$2 = \frac{5^2}{2g} + h_f$$
  

$$h_f = 0.75 \text{ m}$$

www.madeeasy.in

From Darcy-Weisbach equation,

$$h_f = \frac{f L V_2}{2gd}$$
$$0.75 = \frac{0.01 \times L \times 5^2}{2 \times 10 \times 0.05}$$
$$L = 3 \text{ m}$$

 $\mu = 9 \text{ Poise} = 0.9 \text{ Pa-s}$ R = 15 cm = 0.15 m

C T T 7

28. (a)

Given

We know that,

$$\tau_{\text{wall}} = \frac{R}{2} \left( \frac{\partial P}{\partial x} \right)$$
$$0.3 \times 10^3 \,\text{Pa} = \frac{0.15 \,\text{m}}{2} \left( \frac{\partial P}{\partial x} \right)$$
$$\left( \frac{\partial P}{\partial x} \right) = 4 \,\text{kPa/m}$$

 $\tau_{wall} = 0.3 \text{kPa}$ 

For laminar flow in pipe,

$$u_{\max} = \frac{1}{4\mu} \left(\frac{\partial P}{\partial x}\right) \left(R^2\right)$$
$$u_{\max} = \frac{1}{4 \times 0.9 \text{ Pa-s}} \times \left(4 \times 10^3 \text{ Pa/m}\right) \times (0.15)^2 \text{ m}^2$$
$$u_{\max} = 25 \text{ m/s}$$
We know,
$$u_{\text{mean}} = \frac{u_{\max}}{2} \quad \text{(For laminar flow in pipe)}$$
$$u_{\max} = 12.5 \text{ m/s}$$

#### 29. (b)

- Cavitation can be prevented by reducing the velocity head as pressure head increases.
- When the flow contracts, it becomes rotational due to Eddie formation and pressure decreased after contraction instead of increase.

## 30. (d)

- Venturimeter alignment doesn't affect the dischargement measurement.
- Flow nozzle is used for discharge measurement.
- Coefficient of velocity for an orifice is  $C_v = \frac{X}{2\sqrt{y.H}}$
- Pitot static tube measures dynamic pressure.

## 

© Copyright: MADE EASY