

DETAILED EXPLANATIONS

1. (b)

Given,

We must choose at least 3 women, so, we calculate 3 women, 4 women and 5 women and by addition rule add the results:

$$
= {}^{12}C_3 \times {}^{20}C_2 + {}^{12}C_4 \times {}^{20}C_1 + {}^{12}C_5 \times {}^{20}C_0
$$

= 220 × 190 + 495 × 20 + 792 × 1 = 52492

2. (d)

- **1.** is valid by constructive dilemma.
- **2.** is valid by destructive dilemma.
- **3.** is valid by hypothetical syllogism.

All of the above are known rules of inference.

$$
3. \qquad (b)
$$

$$
f(x) = x + 2
$$

\n $y = x + 2$
\n $x = y - 2$
\n⇒ $f^{-1}(y) = y - 2$
\n $g(3) = (1 + (3)^2)^{-1} = (1 + 9)^{-1} = \frac{1}{10}$
\n $f^{-1}g(3) = f^{-1}(g(3)) = g(3) - 2$
\n⇒ $f^{-1}g(3) = \frac{1}{10} - 2 = -1.9$

4. (c)

Consider each options:

- (a) Null graph of 6 vertices is 1-chromatic so it is correct.
- (b) It is correct because tree with 2 or more vertices is always bichromatic.
- (c) It is incorrect. Consider a wheel graph of 7 vertices.

The chromatic number of graph is 3.

- Color 1 for *G*
- Color 2 for A , E , C
- Color 3 for *F*, *B*, *D*
- A wheel graph is 3-chromatic when *n*-vertices are odd and 4-chromatic when *n*-vertices is even.
- So here $n = 7$, $\left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) = \left(\left\lfloor \frac{7}{2} \right\rfloor + 1 \right) = 4$ 2 | | | | | 2 $\left| \frac{n}{2} \right| + 1 = \left| \frac{7}{2} \right| + 1 = 4$ which is incorrect because only 3 colors are required to

color the above wheel graph.

(d) This statement is correct because graph without odd length cycle having atleast 1 edge is bichromatic.

All other statements are true except option (c).

5. (c)

Considering each statements:

- If a graph is bipartite, then its two colourable. Because a bipartite graph can be represented as two groups of vertices such that vertices in same graph are not adjacent. Similarly, statement 2 is equivalent to statement 1.
- If a bipartite graph has a cycle, then it has to be of even length. Graph G is bipartite iff no odd length cycle.

• A $B \longleftarrow C$ This graph has a Hamiltonian circuit, but the cycle is of odd length and not

bipartite.

$$
\therefore \quad 3 \not\equiv 4
$$

• A B

This graph is bipartite and 2 colorable but does not have Hamiltonian circuit. So 1, 2 and 4 are equivalent statements.

6. (c)

$$
a_n = -5_{a_{n-1}} + 6_{a_{n-2}}
$$

$$
a_n + 5_{a_{n-1}} - 6_{a_{n-2}} = 0
$$

$$
x^2 + 5x - 6 = 0
$$

 $x^2 + 6x - x - 6 = 0$ $x(x + 6) - 1(x + 6) = 0$ $(x + 6) (x - 1) = 0$ $x = -6$, $x = 1$ ∴ $a_n = A(-6)^n + B \cdot (1)^n$ $a_n = A(-6)^n + B$

7. (b)

Number of ways all vowels are together = $\frac{5! \times 4!}{2! \times 2!}$ = 720 2! 2! $\frac{\times 4!}{\cdot \cdot \cdot}$ =

Number of ways not all vowels are together = Total number of permutation – Number of ways all vowels are together

$$
= \frac{8!}{2! \, 2!} - 720
$$

 \Rightarrow Number of not all vowels together = (10080 – 720) = 9360

8. (a)

Hamiltonian cycle for the above graph G is *abcdefa*. Condition: Each node should be visited exactly once.

9. (c)

The theorem is every finite lattice is bounded but a bounded lattice may not be finite.

10. (d)

Complementary lattice may not have unique complement for every element.

11. (a)

 $A \cup B \subseteq A \cap B$ holds true when $A = B$. It is true for empty as well as nonempty sets. \Rightarrow $|A| = |B|$ is true $|A| \ge 0$ *eg.* $A = B \{a, b\}$ Hence $A = \{\}$, $B = \{\}$ "always" is false.

12. (a)

R is reflexive: Since (a, b) *R* (a, b) for all elements (a, b) because $a = a$ and $b = b$ are always true. *R* is symmetric: Since (a, b) *R* (c, d) and $a = c$ or $b = d$ which can be written as $c = a$ or $d = b$. So, (*a*, *b*) *R* (*a*, *b*) is true.

R is not antisymmetric: Since $(1, 2)$ *R* $(1, 3)$ and $1 = 1$ or $2 = 3$ true b/c $1 = 1$. So $(1, 3)$ *R* $(1, 2)$ but here $2 \neq 3$ so $(1, 2) \neq (1, 3)$. So, only statement 1 and 2 are correct.

13. (a)

Total number of subset of 5 element = ${}^{25}C_5$

$$
= \frac{25 \times 24 \times 23 \times 22 \times 21}{5 \times 4 \times 3 \times 2 \times 1} = 23 \times 22 \times 21 \times 5 = 53130
$$

T be a 5 element subset contain no odd number = $^{12}C_5$

$$
= \frac{12 \times 11 \times 10 \times 9 \times 8}{5 \times 4 \times 3 \times 2 \times 1} = 792
$$

So number of 5 element subset with atleast 1 odd number

$$
T \subseteq S = {}^{25}C_5 - {}^{12}C_5
$$

= 53130 - 792 = 52338

14. (c)

A number is relatively prime to 15 iff it is not divisible by 3 and not divisible by 5.

Set of integer from 1 to 1000 divisible by $3 = \frac{1000}{0} = 333$. $=\left[\frac{1000}{3}\right]=$

Set of integer from 1 to 1000 divisible by $5 = \frac{1000}{5} = 200$. $=\left[\frac{1000}{5}\right]=$

So, number of integer not relatively prime to 15 are

$$
|A \cup B| = |A| + |B| - |A \cap B|
$$

= $\left\lfloor \frac{1000}{3} \right\rfloor + \left\lfloor \frac{1000}{5} \right\rfloor - \left\lfloor \frac{1000}{15} \right\rfloor$

$$
= 333 + 200 - 66 = 467
$$

So, number of integer relatively prime to 15 are

$$
\overline{|A \cup B|} = 1000 - 467 = 533
$$

15. (d)

"Not every satisfiable logic is Valid"

= Not (every satisfiable logic is Valid) $=$ Not ($\forall x$ (satisfiable $(x) \Rightarrow$ Valid (x)) option (a)

 $=$ Not ($\forall x (\neg$ satisfiable \lor Valid (x)) option (c)

$$
= \exists x \, (satisfiable \, (x) \land \neg \, Valid \, (x))
$$
 option (b)

Statement (d) says every satisfiable logic is invalid. So option (d) is not represent given statement.

16. (b)

- I is not D_{42} because the divisor 7 is missing. So, there is no way for I to be isomorphic to $(P{a,b,c}, \subseteq)$ as it needs to have 8 divisors but right now it has only 7.
- II is D_{66} a well known boolean algebra and has 8 vertices and its masses diagram will be isomorphic $(P({a,b,c}), \subseteq)$.
- III is not isomorphic even though it looks like D_{70} it is on the relation \leq , resulting in a chain, which won't be boolean algebra.

$$
17. (a)
$$

 $T(n) - 9T(n - 1) + 20T(n - 2) = 0$ Let $a_n = T(n)$ $\Rightarrow a_n - 9a_{n-1} + 20a_{n-2} = 0$ $t^2 - 9t + 20 = 0$

Put value of c_1 and c_2 in eq. (1)

$$
a_n = 2.5^n - 5.4^n
$$

18. (d)

- *S*₁ is correct because connected graph has a Euler circuit if and only if it has number of odd degree vertices is 0.
- A connected graph has a Euler path if and only if it has number of odd degree vertices is either 0 or 2. Therefore a connected graph has Euler path but not euler circuit if and only it has exactly 2 vertices of odd degree therefore $S₂$ is correct.
- A complete graph of *n*-vertices contains $n 1$ degree at each vertex which is greater than $\frac{n}{2}$

for all $n \geq 3$ therefore complete graph has a Hamiltonian circuit. So S_3 is correct

 C_6 is bipartite because any cycle graph with even number of vertices is bipartite. A complete graph with 4 vertices contains complete graph of 3 vertices which contains odd length cycle hence it is not bipartite. So statement S_4 is incorrect.

19. (a)

Maximum and minimum number of component given by:

1.
\n
$$
n - K \le e \le \frac{(n - K + 1)(n - K)}{2}
$$
\n1.
\n
$$
n - e \le K
$$
\n
$$
10 - 6 \le K \qquad (\because \text{Minimum number of component})
$$
\n2.
\n
$$
e \le \frac{(n - K + 1)(n - K)}{2}
$$
\n
$$
6 \le \frac{(10 - K + 1)(10 - K)}{2}
$$

2

 $2 \times 6 \leq (11 - K) (10 - K)$ $12 \leq (10 - K) (11 - K)$ $12 < K^2 + 110 - 21 K$ $0 \leq K^2 + 98 - 21 K$ K^2 + 98 – 21 $K = 0$ $K = 14, 7$

Maximum value of *K* is 7 because number of components never be larger than nodes.

20. (b)

Since bit are '0' and '1' form. The hamming distance relation on bit has a digraph which will be always an 5-cube where 5 is the number of bits.

• Chromatic number of *n*-cube = 2 (Since *n*-cube is always bipartite)

So chromatic number of 5-cube = 2

i.e., $'0' =$ One color '1' = Second color

• Diameter of *n*-cube = *n* Diameter of 5 cube = 5

i.e., maximum length between any two vertex.

So ratio

$$
\frac{2}{5} = \frac{X}{Y}
$$

Y-X = 5 - 2 = 3

21. (c)

Total number of terms $= 6 + 1 = 7$ So middle term is 4th term. $(x + y)^n$ has $(r + 1)$ th term as ${}^nC_r x^{n-r} y^r$. $[(3 + 1)$ th term is

$$
= {}^{6}C_{3} \left(\frac{\sqrt{x}}{3}\right)^{6-3} \left(\frac{-3}{x\sqrt{y}}\right)^{3}
$$

$$
= {}^{6}C_{3} \cdot \left(\frac{(\sqrt{x})}{27}\right)^{3} \cdot \left(\frac{-27}{x^{3} \cdot (\sqrt{y})^{3}}\right)
$$

$$
= 20 \cdot \left(\frac{x^{3/2}}{27}\right) \cdot \left(\frac{-27}{x^{3} \cdot (y)^{3/2}}\right)
$$

$$
= -20 \left(\frac{x}{y}\right)^{\frac{3}{2}} \cdot \frac{1}{x^3}
$$

22. (c)

I and IV are true. Let's see why IV is true first. We will treat set theory as boolean algebra here, and will demonstrate how to apply this approach.

Given, $S \subseteq R$, which in same as, $\Rightarrow S - R = \varphi$

The same can be written in boolean algebra as, \Rightarrow *S* \land *R'* = 0

Since we know that \land is commutative, \Rightarrow *R'* \land *S* = 0 Now $R' \wedge S = 0$ is same as $R' \wedge (S')' = 0 \Rightarrow R' - S' = \varphi$ ⇒ *R*′ ⊆ *S*′

Therefore IV is correct.

In order to show that R^{-1} is a subset of S^{-1} , we just need to show that every element in R^{-1} belongs to *S*–1. So let's assume that *R* is a subset of *S*. So if (*a*, *b*) is an element of *R*, then (*a*, *b*) belongs to *S* as well. As (a, b) belongs to R , (b, a) belongs to R^{-1} . Also, (a, b) belongs to S , (b, a) will belong to S^{-1} . Since we can show this presence of every element in R^{-1} in S^{-1} , we see that R^{-1} is a subset of S^{-1} . However II is clearly not true.

23. (c)

This problem corresponds to the number of non-negative integral solution to

$$
x_1 + x_2 + x_3 = 10
$$
 with the conditions
\n
$$
0 \le x_1 \le 10
$$

\n
$$
0 \le x_2 \le 5
$$

\n
$$
0 \le x_3 \le 3
$$

Generating functions are required, since the variables have an upper constraint. Generating function is

$$
(1 + x + x2 \dots + x10) (1 + x + x2 \dots + x5) (1 + x \dots + x3)
$$

= $\left(\frac{1 - x^{11}}{1 - x}\right) \left(\frac{1 - x^6}{1 - x}\right) \left(\frac{1 - x^4}{1 - x}\right)$
= $\frac{(1 - x^{11})(1 - x^6)(1 - x^4)}{(1 - x)^3}$
= $(1 - x^4 - x^6 + x^{10}) \sum_{r=0}^{\infty} {^{3-1+r}C_r \cdot x^r}$
= $(1 - x^4 - x^6 + x^{10}) \sum_{r=0}^{\infty} {^{r+2}C_r \cdot x^r}$

The coefficient of x^{10} in above generating function is

 ${}^{12}C_{10} - {}^{8}C_{6} - {}^{6}C_{4} - {}^{2}C_{0} = 24$

24. (c)

*R*1 is nothing but *R* itself. Now, $R^2 = R \circ R$ i.e. composite of *R* with *R* If $(a, b) \in R$, then $(a, c) \in R^2$ iff $(b, c) \in R$. So, $R^2 = \{(1, 1), (2, 1), (3, 1), (4, 1)\}\$ $R³ = \{(1, 1), (2, 1), (3, 1), (4, 1)\}$ So, $P = R^1 \cup R^2 \cup R^3$ $= \{(1, 1), (2, 1), (3, 1), (4, 1), (4, 2)\}$ ∴ Cardinality = 5

NADE EASY

25. (c)

"*f* is one-one and onto". Negation of this statement will be "*f* is not one-one or not onto". Now, according to statement *R*. Let, $a_1 = 4 \in A$

$$
a_2 = 5 \in A
$$

$$
f(a_1) = f(a_2) = 10
$$

So,

Clearly this is condition of not one-one.

So, *R* is correct.

Now, *Q* is definition of onto so we have to take negation of this. Therefore option (c) is correct answer.

26. (a)

(*Z*, +) is a group and *Z* ⊆ *Q*.

 $(A, +)$ is not a group. Hence it is not a subgroup of $(Q, +)$.

 $(B, +)$ is not a group. Hence it is not a subgroup of $(Q, +)$.

27. (c)

G is a planar graph. Every planar graph is 4 colorable. Every face is bordered by 3 edges. So graph has possibilities of 3 or 4 colors.

 k_3 colored with 3 and k_4 colored with 4 colors.

28. (b)

E = {{2, 10}, {4, 10}, {6, 10}, {8, 10}, {4, 5}, {5, 8}}

 \Rightarrow 6 edges are present in G.

29. (c)

30. (b)

BEER