

Leading Institute for ESE, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

Power System-1

ELECTRICAL ENGINEERING

Date of Test: 14/10/2024

ANSWER KEY >

1.	(a)	7.	(c)	13.	(b)	19.	(c)	25.	(c)
2.	(c)	8.	(c)	14.	(b)	20.	(b)	26.	(b)
3.	(d)	9.	(b)	15.	(c)	21.	(c)	27.	(b)
4.	(d)	10.	(c)	16.	(c)	22.	(b)	28.	(a)
5.	(b)	11.	(d)	17.	(d)	23.	(a)	29.	(a)
6.	(a)	12.	(a)	18.	(a)	24.	(d)	30.	(a)

DETAILED EXPLANATIONS

1. (a)

Solar cell maximum power,

$$P_{\text{max}} = V_{\text{max}} \times I_{\text{max}}$$
= -6 × 10⁻³ × 0.14
= 0.84 mW

$$P_{\text{input}} = \text{Intensity} \times \text{Area}$$
= 100 × 5 × 10⁻⁴ W

$$\eta = \frac{0.84 \times 10^{-3}}{100 \times 5 \times 10^{-4}} = 0.0168 \text{ or } 1.68\%$$

Cell efficiency,

The self GMD of the seven strand conductor is the 49th root of 49 distances,

$$D_{s} = ((r')^{7} (D_{12}^{2} D_{26}^{2} D_{14}^{2} D_{17})^{6} (2r)^{6})^{1/49}$$

$$D_{s} = ((0.7788r)^{7} (D_{12}^{2} D_{26}^{2} D_{14} D_{17})^{6} (2r)^{5})^{1/49}$$

$$D_{12} = 2r, D_{26} = 2\sqrt{3}r, D_{14} = 4r, D_{17} = 2r$$

$$D_{s} = ((0.7788r)^{7} (2^{2}r^{2} \times 3 \times 2^{2}r^{2} \times 2^{2} \times r \times 2r \times 2r)^{6})^{1/49}$$

$$D_{s} = \frac{2r(3\times0.7788)^{1/7}}{6^{1/49}}$$

$$= 2.1767 \times 2 = 0.435 \approx 0.44 \text{ cm}$$

3. (d)

For given system:

Total reactive power at,

 G_1 = Reactive power demand at Bus 1 + Reactive power being transferred to Bus 2 Reactive power demand at bus = 10 pu

Reactive power transferred to bus 2,

$$Q_{s} = \frac{|V_{s}|}{X} (|V_{s}| - |V_{R}| \cos \delta)$$

$$Q_{s} = \frac{1}{0.04} (1 - 1 \times \cos 20^{\circ}) = 1.508 \text{ pu}$$

:. Total reactive power at $G_1 Q_{G1} = 1.508 + 10 = 11.508$ pu

4. (d)

Given transmission line model can be drawn,

Equivalent T-matrix will be

$$\begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix} = \begin{bmatrix} 1 + YZ & Z \\ Y & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1/jX_r & 1 \end{bmatrix}$$

For no ferranti effect,

$$V_s = V_R \rightarrow A_1 = 1$$

$$1 + YZ + \frac{Z}{jX_r} = 1$$

Simplifying,

$$YZ = j\frac{Z}{X_r}$$

or

$$|X_r| = \frac{Z}{YZ} = \frac{1}{Y} = \frac{1}{4 \times 10^{-4}} = 2500 \Omega$$

5. (b)

Plug setting =
$$\frac{\text{Primary fault current of C.T.}}{\text{CT ratio} \times \text{relay current setting}}$$

$$1 = \frac{I_f}{\frac{500}{1} \times 0.3}$$

$$I_f = 0.3 \times 500 = 150 \text{ A}$$

 $I_f = 0.3 \times 500 = 150 \; \mathrm{A}$ Fault current, $I_f = 3 \; I_{a0}$

$$I_{a0} = \frac{I_f}{3} = \frac{150}{3} = 50 \text{ A}$$

6. (a)

$$C_{an} = \frac{2\pi\varepsilon_0}{\ln\left(\frac{GMD}{r}\right)} F/m$$

GMD =
$$(3 \times 4 \times 5)^{1/3}$$
 = 3.914 m

$$C_{an} = \frac{2\pi \times 8.854}{\ln\left(\frac{3.914}{2 \times 10^{-2}}\right)} \times 10^{-12} \text{ F/m}$$

$$C_{an} = 10.54 \text{ pF/m}$$

7.

Transmission line parameters,

$$V_s = A V_r + B I_r \qquad \dots (i)$$

There is no load current but current flowing through the shunt inductor is I_{I} .

Now equation (i) becomes,

$$V_s = A V_r + B I_t$$

 $V_s = A \ V_r + B \ I_L$ Dividing the above equation with I_L on both sides.

$$\frac{V_s}{I_L} = A \frac{V_r}{I_L} + B \frac{I_L}{I_L}$$

$$V_S = V_R$$

Since,

$$\frac{s}{I_L} = A \frac{r_T}{I_L} + B \frac{r_L}{I_L}$$

$$V_S = V_S$$

$$X_L = A X_L + B$$
 $X_L (1 - A) = B$
 $X_L = \frac{B}{1 - A} = \frac{160}{1 - 0.9} = 1600 \Omega$

8. (c

 P_{max} is more if 'X' of line is low,

$$P_{\text{max}} = \frac{V_1 V_2}{X}$$

 \therefore L is low $(X = 2\pi fL)$

$$L = 2 \times 10^{-7} \ln \left(\frac{GMD}{GMR} \right)$$

To get more $P_{\rm max}$, GMD should be low and GMR should be high.

9. (b)

$$V = i\sqrt{\frac{L}{C}} = 20\sqrt{\frac{2}{8 \times 10^{-6}}} = \frac{20}{2 \times 10^{-3}} = 10 \text{ kV}$$

10. (c)

Maximum dielectric stress = g_{max}

$$g_{\text{max}} = \frac{V}{r \ln\left(\frac{R}{r}\right)}$$

Minimum dielectric stress = g_{min}

$$g_{\min} = \frac{V}{R \ln \left(\frac{R}{r}\right)}$$

: the ratio of maximum to minimum dielectric stress

$$=\frac{g_{\text{max}}}{g_{\text{min}}}$$

(or)
$$\frac{g_{\text{max}}}{g_{\text{min}}} = \frac{\frac{V}{r \ln\left(\frac{R}{r}\right)}}{\frac{V}{R \ln\left(\frac{R}{r}\right)}} = \frac{R}{r} = \frac{D}{d}$$

11. (d)

GMD =
$$(20 \times 20 \times 40)^{1/3}$$
 = 25.2 feet
GMR = $(0.7788 \times 0.5 \times 8)^{1/2}$ = 1.765 inch
= $\frac{1.765}{12}$ feet = 0.147 feet

Inductance,
$$L = 0.2 \ln \frac{GMD}{GMR} \text{ mH/km}$$

= $0.2 \ln \frac{25.2}{0.147} = 1.028 \text{ mH/km}$

12. (a)

Input to motor =
$$\frac{\text{Motor output}}{\eta} = \frac{80 \text{ kW}}{0.95} = 84.21 \text{ kW}$$

Initial power factor, $\cos \phi_1 = 0.75$ (lagging)

Power factor after improvement,

$$\cos \phi_2 = 0.95 \text{ (lagging)}$$

KVAR rating of capacitor bank

$$=P(\tan \phi_1 - \tan \phi_2)$$

= $84.21 \left[\tan(\cos^{-1}(0.75) - \tan(\cos^{-1}(0.95)) \right]$

= 46.58 kVAR

13. (b)

GMR =
$$\left[\left((0.7788 \times 2) \times 50 \times 50 \times 50 \sqrt{2} \right)^4 \right]^{1/16}$$

= 22.9 cm

14. (b)

For given dc system, SLD can redrawn,

$$V_{\min} = V_{dc} - I_1 R_1 - I_2 R_2 - I_3 R_3$$

= 400 - (140 × 0.1) - (120 × 0.06) - (0.04 × 40)
= 400 - 14 - 7.2 - 1.6 = 377.2 V

15. (c)

Given,
$$|V_S| = |V_R| = 220 \text{ kV}$$

 $\alpha = 5^\circ,$
 $\beta = 75^\circ$

Since the power is received at unity power factor,

$$Q_R = 0$$

$$0 = \frac{220 \times 220}{200} \sin(75^\circ - \delta) - \frac{0.85}{200} \times (220)^2 \sin(75^\circ - 5^\circ)$$

$$= 242 \sin(75^\circ - \delta) - 193.29$$

$$193.29 = 242 \sin(75^\circ - \delta)$$

$$75^\circ - \delta = 53^\circ$$

Power angle, $\delta = 22$

EE

Considering the midpoint location with compensator,

$$V_s \angle \delta_s$$
 $V_m \angle \delta_m$ $V_R \angle 0^\circ$

The reactance of line upto midpoint is X/2,

$$P_{e} = \frac{V_{s}V_{m}}{X/2}\sin(\delta_{s} - \delta_{m}) = \frac{V_{m}V_{R}}{X/2}\sin(\delta_{m} - 0)$$
or
$$\delta_{s} - \delta_{m} = \delta_{m} \text{ or } \delta_{m} = \frac{\delta_{s}}{2} = \frac{30^{\circ}}{2} = 15^{\circ}$$

$$P_{e} = \frac{V_{s}V_{m}}{X/2}\sin(\delta_{s} - \delta_{m})$$

$$= \frac{1 \times 0.90}{0.4/2}\sin 15^{\circ} = 1.16 \text{ pu}$$

$$V_S = 120 \text{ kV},$$
 $V_r = 110 \text{ kV},$ $A = 0.96$ $\alpha = 1^{\circ},$ $\beta = 80^{\circ}$

Maximum power transmitted is given by

$$P_{\text{max}} = \frac{V_s \cdot V_r}{B} - \frac{AV_r^2}{B} \cos(\beta - \alpha)$$

$$= \frac{110 \times 120}{100} - \frac{0.96 \times 110^2}{100} \cos(80^\circ - 1^\circ)$$

$$P_{\text{max}} = 109.83 \text{ MW}$$

18. (a)

Core radius,
$$r_1 = \frac{1.5}{2} = 0.75 \text{ cm}$$
 Sheath radius,
$$r_2 = \frac{5}{2} = 2.5 \text{ cm}$$

$$\ln\left(\frac{r_2}{r_1}\right) = \log_e^{2.5/0.75} = 1.2$$

$$\rho = \frac{R_{\rm INS} \times 2\pi l}{\ln\left(\frac{r_2}{r_1}\right)} = \frac{1820 \times 10^6 \times 2\pi \times 3500}{1.2} = 33.35 \times 10^{12} \,\Omega\text{-m}$$

19.

Capacitance between any two core,

$$C_2 = 3.7 \, \mu \text{F}$$

Capacitance of each core to neutral,

$$C_N = 2C_2 = 2 \times 3.7 = 7.4 \,\mu\text{F}$$
 $I_C = 2\pi f \, V_P \, C_N$

$$= 2\pi \times 50 \times \frac{11000}{\sqrt{3}} \times 7.4 \times 10^{-6} = 14.76 \,\text{A}$$

20. (b)

Insulation resistance,
$$R = \frac{\rho}{2\pi l} \ln \left(\frac{R}{r}\right) \Omega$$

$$\frac{R_2}{R_1} = \frac{l_1}{l_2}$$

$$R_2 = 1 \,\mathrm{M}\Omega \bigg(\frac{100}{10}\bigg) = 10 \,\mathrm{M}\Omega$$

21. (c)

Power transfer capacity $\propto V^2$

$$\frac{P_1}{P_2} = \frac{V_1^2}{V_2^2}$$

$$P_2 = P_1 \frac{V_2^2}{V_1^2} = P \left(\frac{100}{400}\right)^2 = \frac{P}{16}$$

22. (b)

Primary line current =
$$I_{LP} = \frac{10 \times 10^6}{\sqrt{3} \times 132 \times 10^3} = 43.74 \text{ A}$$

CT connected to primary of transformer is delta connected.

So, the current in the secondary of the CT is $\frac{5}{\sqrt{3}}A$

 \therefore The CT ratio of primary of the transformer is, 43.74/(5/1.732) The secondary line current of the transformer is,

$$I_{LS} = \frac{10 \times 10^6}{\sqrt{3} \times 66 \times 10^3} = 87.47 \text{ A}$$

 \therefore The CT ratio on the secondary is, $\frac{87.47}{5}$.

23. (a)

In π model, the shunt admittance at each end of the line is $\frac{Y}{2}$

24. (d)

Zero regulation of a transmission line occurs at a leading power factor,

$$\phi = \tan^{-1}\left(\frac{X}{R}\right)$$

$$X = R$$

$$\phi = 45^{\circ}$$

$$\cos \phi = 0.707$$
 leading.

EE

25. (c)

$$P_R = \frac{V_S V_R}{Z} \cos(\theta - \delta) - \frac{V^2}{Z} \cos\theta$$

For maximum power transfer,

$$\theta = \delta$$

and also it is given that, $V_R = V_S = V$

$$P_{R \text{ max}} = \frac{V^2}{Z} - \frac{V^2}{Z} \cos \theta$$

$$Z = \sqrt{R^2 + X^2}$$

$$\cos \theta = \frac{R}{Z}$$

$$P_{R \text{ max}} = \frac{V^2}{\sqrt{R^2 + X^2}} - \frac{V^2 R}{\left(R^2 + X^2\right)}$$

$$Z = R + jX$$

So, keeping
$$\frac{dP_{R \max}}{dX} = 0$$
We get,
$$X = \sqrt{3}R$$

We get,
$$X = \sqrt{3}R$$

 $X = \sqrt{3} \times \sqrt{3}$
 $X = 3 \Omega$

26. (b)

The relay current setting = 25%

:. The relay operates at a current of

$$= 0.25 \times 5 = 1.25 \text{ A}$$

The VA burden on the relay is,

$$VA = 5$$

$$5 = V \times 1.25$$

$$V = 4 \text{ V}.$$

27. (b)

String efficiency = $\frac{\text{Voltage across the string}}{n \times \text{Voltage across the lower most unit}}$

www.madeeasy.in © Copyright: MADE EASY

28. (a)

$$Load factor = \frac{Average load}{Maximum demand}$$

$$Plant capacity factor = \frac{Average load}{Plant capacity}$$

$$\frac{\text{Load factor}}{\text{Plant capacity factor}} = \frac{0.6}{0.5} = \frac{\text{Plant capacity}}{\text{Maximum demand}}$$

Plant capacity =
$$\frac{0.6}{0.5} \times 30 = 36 \text{ MW}$$

Reserve capacity = Plant capacity - Maximum demand
=
$$36 - 30 = 6$$
 MW

29. (a)

The secondary current,
$$I_S = \frac{I_P}{n}$$

Where,

$$n = \frac{500}{5}$$

$$I_S = 7500 \times \frac{5}{500} = 75 \,\text{A}$$

Relay current setting = 125% of $5A = 1.25 \times 5 = 6.25$ A

Plug setting multiplier (PSM) =
$$\frac{75}{6.25}$$
 = 12

Using data in characterstic table is

Operating time corresponding to PSM = 12 is 2.8 sec (at TMS = 1)

Operating time of relay = $2.8 \sec \times 0.4 = 1.12 \sec$.

30. (a)

Since the capacitance measured is 3.04 μF between the conductors, the capacitance per phase will be

$$2 \times 3.04 = 6.08 \,\mu\text{F}$$

3-phase kVAR required =
$$V^2\omega C$$

$$= 20^2 \times 314 \times 6.08 \times 10^{-3}$$

$$= 763.6 \text{ kVAR}$$