C	LASS T	EST	•			S.I	No.:015	SK_ABCD_	210425
NE MADE EASY									
	Leading Institute for IES, GATE & PSUs								
	Delhi Bhopal Hyderabad Jaipur Pune Kolkata Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612								
	HYDROLOGY								
CIVIL ENGINEERING									
	Date of Test : 21/04/2025								
ANS	WER KEY	>							
	(1.)	_	(-)				(1)		(.1)
1.	(d)	7. 8	(C)	13. 14	(C)	19. 20	(b)	25.	(d)
3.	(a)	9.	(a) (d)	14.	(a) (C)	20.	(a)	20.	(d)
4.	(a)	10.	(c)	16.	(d)	22.	(d)	28.	(a)
5.	(a)	11.	(c)	17.	(b)	23.	(c)	29.	(a)
6.	(a)	12.	(a)	18.	(b)	24.	(c)	30.	(c)

Detailed Explanations

1. (b)

For 2-hr UH, the base time will increase, hence peak will go down.

2. (d)

Certain chemicals such as cetyl alcohol (hexadecanol) and stearyl alcohol (octadecanol) forms monomolecular layers on a water surface. These layers act as evaporation inhibitors by preventing the water molecules to escape past them.

3. (a)

Lake evaporation = $C_P \times Pan$ evaporation

Average value of Pan coefficient C_p

Class A pan	0.70
ISI pan	0.80
Colorado Sunken pan	0.78

So for class A pan, C_P value is the minimum and , so for same lake evaporation, pan evaporation is maximum for class A pan.

4. (a)

Since variation is more than 10%,

$$P_x = \frac{105}{3} \left[\frac{156}{155} + \frac{140}{150} + \frac{104}{120} \right]$$

= 98.2 cm

5. (a)

$$Q_{\text{equilibrium}} = 2.78 \frac{A}{T}$$
$$= 2.78 \times 360 \times \frac{1}{4} \simeq 250 \text{ cumecs}$$

Leading Institute for IES, GATE & PSUe

6. (a)

7. (c)

The limiting case of a UH of zero duration is known as IUH (Instantaneous Unit Hydrograph). The ordinate of one IUH at any time 't' is the slope of S-curve of intensity 1 cm/hr.

8. (a)

Isopleth is a line on a map connecting points having same numerical values of a certain quantity such as population figure or geographical measurement. Isobars are contour lines that connects different points with same constant pressure. Isochrones are lines on a map connecting points relating to equal time of travel of surface runoff or equal time of concentration.

11. (c)

12.

	Peak of DRH $=$	135 – 10 = 125 m ³ /s
	P =	54 mm, $\phi = 4$ mm/hr
.:.	n =	$P - \phi \times t = 54 - 4 \times 1 = 50 \text{ mm} = 5 \text{ cm}$
	Peak of 1 hr. UH $=$	$\frac{125}{5} = 25 \text{ m}^3/\text{s}$
(a)		
	n =	2 + 3 = 5 cm
For DRH,	$(\Sigma O) =$	(1 + 7 + 26 + 37 + 27 + 13 + 1) - 7 = 105
	n =	$\frac{0.36 \Sigma \text{Ot}}{\text{A}}$
\Rightarrow	A =	$\frac{0.36 \times 105 \times 1}{5} = 7.56 \text{ km}^2$
(c)		0

13. (c)

$$P = 5 \times 2 = 10 \text{ cm}$$

= 10 × 10⁻² × 100 × 10⁴ = 10⁵ m³
R = 1 m³/s × 10 × 60 × 60 = 36000 m³
Runoff coefficient = $\frac{R}{P} = \frac{36000}{10^5} = 0.36$

...

Time (hr)	4- <i>h</i> UH (m ³ /s)	S-curve addition	S-curve	Offset S-curve	Δy	$6\text{-}h UH = (\Delta y \times 4/6)$
0	0	-	0	-	0	0
2	9		9	-	9	6
4	20	0	_ 20	-	20	13.33
6	35	9	44	0	44	29.33
8 10	43 22	20	63	9 20	54 46	36 30.67
10		63 66	- 100	44 69	10	
				66		

(i) Mean rainfall,
$$(\overline{P}) = \frac{\Sigma P}{n} = \frac{800 + 620 + 400 + 560}{4} = 595 \text{ mm}$$

(ii) Standard deviation,
$$\sigma = \sqrt{\frac{(P-\overline{P})^2}{n-1}} = 165.23$$

(iii) Coefficient of variation,
$$c_v = \frac{100 \, \sigma}{\overline{P}} = \frac{100 \times 166.93}{595} = 27.77$$

(iv) Optimum number of rain gauges,
$$(N) = \left(\frac{C_v}{\epsilon}\right)^2 = \left(\frac{28.29}{10}\right)^2 \Rightarrow 7.7113 \approx 8$$
Nos

(v) Additional gauges required to be installed

16. (d)

Time (1)	Total Stream flow in cumecs (2)	Base flow in cumecs (3)	Direct run off = column (2) – 4.8 (4)
0	4.8	4.8	0
2	5.1	4.8	0.3
4	6.5	4.8	1.7
6	7.4	4.8	2.6
8	10.2	4.8	5.4
10	8.8	4.8	4.0
12	7.4	4.8	2.6

Using Simpson's rule, the area enclosed by this discharge hydrograph

$$= \frac{H}{3} \left[\frac{1^{st} + \text{last ordinate}}{2} + 4 \times \text{Even ordinates} + 2 \times \text{odd ordinates} \right]$$
$$= \frac{2 \times 60 \times 60}{3} \left[\frac{0 + 2.6}{2} + 4(0.3 + 2.6 + 4.0) + 2(1.7 + 5.4) \right]$$
$$= 103440 \text{ m}^3$$

17. (b)

Loss = Rainfall - Runoff =
$$\frac{0.8}{100} \times 6 - \frac{256000}{8.6 \times 10^6} = 0.01823 \text{ m} = 1.823 \text{ cm}$$

Rate of loss = $\frac{1.823}{6} = 0.304$ cm/hr

18. (b)

The probability of occurrence of an event ($x \ge x_T$) at least once over a period of n successive years is called the risk, \overline{R} .

Hence, risk is given by

 $\overline{R} = 1 - ($ Probability of occurrence of the event $x \ge x_T$ in *n* years)

$$= 1 - \left(1 - \frac{1}{7}\right)^n = 1 - \left(1 - \frac{1}{50}\right)^{25} = 0.397 \simeq 0.40$$

where,

T = Return period = 50 years n = Expected life = 25 years

19. (b)

Thiessen Polygon Method: In this method, the rainfall recorded at each station is given a weightage on the basis of an area closest to the station.

$$P_{avg} = \frac{P_1A_1 + P_2A_2 + \dots + P_nA_n}{A_1 + A_2 + \dots + A_n}$$

where, $P_1, P_2, \dots P_n$ are the rainfall data of areas $A_1, A_2 \dots A_n$.

20. (b)

Hatched portion shows the total runoff and dotted portion shows the total infiltration.

$$\therefore \qquad \text{Total runoff} = (8-3) \times \frac{15}{60} + (7-3) \times \frac{15}{60} = \left[(8-3) + (7-3)\right] \times \frac{15}{60} = 2.25 \text{ cm}$$

$$\text{Total precipitation} = 2 \times \frac{15}{60} + 2 \times \frac{15}{60} + 8 \times \frac{15}{60} + 7 \times \frac{15}{60} + 1.25 \times \frac{15}{60} + 1.25 \times \frac{15}{60}$$

$$= (2+2+8+7+1.25+1.25) \times \frac{15}{60} = 5.375 \text{ cm}$$

$$W\text{-index} = \frac{\text{Total precipitation} - \text{Runoff}}{\text{Duration of rainfall in hr}} = \frac{5.375 - 2.25}{90/60}$$

$$= 2.083 \text{ cm/hr} \simeq 2.08 \text{ cm/hr}$$

24. (c)

Let the peak of the UH be $\rm Q_{\rm P}.$ The UH can be shown as

Area of DRH gives the volume of rainfall,

25. (d)

Total rainfall = 0.5 + 1.8 + 2.9 = 5.2 cm Infiltration = 5.2 - 2 = 3.2 cm Excess rainfall duration, $t_e = 2 \times 3 = 6$ hrs.

$$\phi$$
-index = $\frac{3.2}{6}$ = 0.533 cm/hr

This value being more than 0.5 cm/hr,

The excess rainfall duration will reduce by 2 hrs.

...

$$t_e = 4 \text{ hrs.}$$

Infiltration = (1.8 + 2.9) - 2 = 2.7 cm
 ϕ -index = $\frac{2.7}{4} = 0.675 \text{ cm/hr}$

26. (c)

Horton's infiltration equation,

$$f_t = f_f + (f_i - f_f)e^{-kht}$$

where,

 f_f = Final infiltration capacity f_i = Initial infiltration capacity

- k_h = Decay constant
- f_t = Infiltration capacity at any time 't'

So,

$$F = \int_{0}^{t} f_{t} dt = \int_{0}^{t} \left\{ f_{f} + \left(f_{i} - f_{f} \right) e^{-k_{h} t} \right\} dt$$

$$\Rightarrow 18 = \int_0^9 \left\{ 1 + (10 - 1)e^{-k_h t} \right\} dt$$

$$\Rightarrow \qquad 18 = \int_0^9 \left(1 + 9e^{-k_h t}\right) dt$$

 \Rightarrow

 \Rightarrow

$$18 = \left(t + \frac{9e^{-k_h t}}{-k_h}\right)^9$$
$$18 = \left(9 + \frac{9e^{-k_h \times 9}}{-k_h}\right) - \left(0 + \frac{9}{-k_h}\right)$$

Now

...

 $e^{-9k_h} \simeq 0$ $18 = 9 + \frac{9}{k_h}$ $k_h \simeq 1 \text{ h}^{-1}$

Alternate Method:

Horton's infiltration equation

where,

 $f_p = f_c + (f_0 - f_c)e^{-kht}$

 f_c = Final steady state infiltration capacity

where,

 f_o = Initial infiltration capacity f_p = Infiltration capacity at any time 't'

 k_h = Horton's Decay coefficient

For large value of 't'

The total depth of infiltration is given as

Given,

$$f_o = 10 \text{ cm/h}$$

$$f_c = 1 \text{ cm/hr}$$

$$t = 9 \text{ hr}$$

$$f_p = 18 \text{ cm}$$

$$18 = 1 \times 9 + \frac{10 - 1}{k_h}$$

 $F_p = f_c t + \frac{f_o - f_c}{k_h}$

:..

 $k_h = \frac{9}{9} = 1 \,\mathrm{hr}^{-1}$

27. (d)

Time base of both the unit hydrographs is same. Let it be *t*.

$$\therefore \quad \frac{1}{2} \times 30 \times t \times \frac{1}{235} = \frac{1}{2} \times 90 \times t \times \frac{1}{A_2}$$
$$\Rightarrow \qquad A_2 = 235 \times 3$$
$$\Rightarrow \qquad A_2 = 705 \text{ km}^2$$

28. (a)

The calculations are tabulated below:

Time (hr)	FH (m ³ /s)	Base Flow (m ³ /s)	DRH (m ³ /s)
Col. (1)	Col. (2)	Col. (3)	Col. (4)
0	5	5	0
12	15	5	10
24	40	5	35
36	80	5	75
48	60	5	55
60	50	5	45
72	25	5	20
84	15	5	10
96	5	5	0
			ΣO = 250

Base flow = $5 \text{ m}^3/\text{sec}$

Now, direct runoff depth,
$$DRD = \frac{0.36 \times \Sigma O \times t}{A}$$

where

...

$$\Sigma O = 250 \text{ m}^3/\text{s}; t = 12 \text{ hr}; A = 450 \text{ km}^2$$

 $DRD = \frac{0.36 \times 250 \times 12}{450} = 2.4 \text{ cm}$

29. (a)

The SCS-CN method is based on the water balance equation of the rainfall in a known interval of time Δt .

30. (c)

$$\begin{array}{|c|c|c|c|c|c|c|}\hline Time(hr) & 0 & 12 & 24 & 36 & 48 \\ \hline Inflow(m^3/s) & 100 & 750 & 780 & 470 & 270 \\ \hline \\ Q_{\text{initial}} &= & 100 \text{ m}^3/\text{s} \\ k &= & 18 \text{ hours} \\ x &= & 0.3 \\ 2kx &< \Delta t < k \\ 2 \times & 18 \times & 0.3 &< \Delta t < 18 \\ \Delta t &= & 12 \text{ hrs} \\ \hline \\ Using \text{ Muskingham equation} \\ C_0 &= & \frac{-kx + 0.5 \Delta t}{k(1-x) + 0.5 \Delta t} = \frac{-18 \times 0.3 + 0.5 \times 12}{18(1-0.3) + 0.5 \times 12} \\ C_1 &= & \frac{kx + 0.5 \Delta t}{k(1-x) + 0.5 \Delta t} = \frac{18 \times 0.3 + 0.5 \times 12}{18(1-0.3) + 0.5 \times 12} \\ \hline \end{array}$$

$$C_2 = \frac{k(1-x) - 0.5 \,\Delta t}{k(1-x) + 0.5 \,\Delta t} = \frac{18(1-0.3) - 0.5 \times 12}{18(1-0.3) + 0.5 \times 12} = 0.355$$

= 0.0323

= 0.613