

MADE EASY

Leading Institute for IES, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

Environment Engineering

CIVIL ENGINEERING

Date of Test: 10/06/2025

ANSWER KEY >

1.	(b)	7.	(b)	13.	(d)	19.	(c)	25.	(d)
2.	(a)	8.	(d)	14.	(a)	20.	(d)	26.	(a)
3.	(b)	9.	(b)	15.	(b)	21.	(d)	27.	(d)
4.	(a)	10.	(d)	16.	(d)	22.	(b)	28.	(c)
5.	(d)	11.	(a)	17.	(c)	23.	(c)	29.	(b)
6.	(a)	12.	(c)	18.	(b)	24.	(b)	30.	(a)

DETAILED EXPLANATIONS

 \Rightarrow

$$TH = \text{Ca}^{2+} \text{ as } \text{CaCO}_3 + \text{Mg}^{2+} \text{ as } \text{CaCO}_3$$

 $= \frac{120}{20} \times 50 + \frac{48}{12} \times 50 = 500 \text{ mg/l as } \text{CaCO}_3$
Alkalinity = $[\text{HCO}_3^-]$ as CaCO_3
 $= \frac{183}{61} \times 50 = 150 \text{ mg/l as } \text{CaCO}_3$

CH = min(TH, Alkalinity) = 150 mg/l

NCH = TH - CH = 350 mg/l

2. (a)

Total organic loading rate = $300 \times (1 - 0.3) \times 6 \text{ kg/day}$

y = 1260 kg/day

F = 2

 $V = 2000 \text{ m}^3 = 0.2 \text{ ha-m}$

$$\eta = \frac{100}{1 + 0.0044 \sqrt{\frac{y}{VF}}} = \frac{100}{1 + 0.0044 \sqrt{\frac{1260}{2 \times 0.2}}}$$

 $\eta = 80.2\%$

$$Q = 10 \text{ m}^3/\text{sec}$$

 $v_d = 2 \times 10^5 \times (1 \times 10^{-6}) = 0.2 \text{ m/sec}$

$$\eta = 1 - e^{-\left(\frac{Av_d}{Q}\right)}$$

$$0.90 = 1 - e^{-\left(\frac{Av_d}{Q}\right)}$$

$$e^{-\left(\frac{Av_d}{Q}\right)} = 0.1$$

$$-\frac{AV_d}{Q} = \ln(0.1) = -\ln 10 = -2.303$$

 $A = 115.13 \text{ m}^2$

 \Rightarrow

4. (a)

$$Q = \frac{2\pi T \left(S_1 - S_2\right)}{\ln\left(\frac{r_2}{r_1}\right)}$$

$$T = \frac{Q \ln\left(\frac{r_2}{r_1}\right)}{2\pi(S_1 - S_2)} = \frac{5000 \times 24 \times 60 \times 10^{-3} \ln\left(\frac{200}{20}\right)}{2\pi(4 - 1)}$$

 $T = 879.5 \text{ m}^2/\text{day} \simeq 880 \text{ m}^2/\text{day}$

5.

Catabolism is destructive phase of metabolism.

6. (a)

$$[pH]_A = 5.5$$

$$[H^+]_A = 10^{-5.5} \text{ and } [OH^-]_A = 10^{-(14-5.5)}$$

$$[OH^-]_A = 10^{-8.5}$$

$$[OH^-]_B = 20[OH^-]_A = 20 \times 10^{-8.5} = 2 \times 10^{-7.5}$$

$$\Rightarrow \qquad [H^+]_B = \frac{10^{-14}}{2 \times 10^{-7.5}} = \frac{10^{-6.5}}{2}$$

$$[pH]_B = -\log\left[\frac{10^{-6.5}}{2}\right]$$

= 6.5 + log2
= 6.5 + 0.3
 $[pH]_B = 6.8$

7. (b)

$$CaO + H_2O \rightarrow Ca(OH)_2$$
 $74 g$

$$\begin{array}{ccc} \mathrm{FeSO_47H_2O} + \mathrm{Ca(OH)_2} & \rightarrow \mathrm{Fe(OH)_2} + \mathrm{CaSO_4} + \mathrm{7H_2O} \\ & & & \mathrm{74\,g} \end{array}$$

$$\frac{8 \operatorname{mg}}{l} \frac{74 \times 8}{278} = 2.13 \operatorname{mg/}l$$

Quantity of quicklime for 592 mg/l of Ca(OH)₂.

$$= \frac{56}{74} \times 2.13 \text{ mg/l} = 1.612 \text{ mg/l}$$

For $10 \times 10^6 l$ of water = 16.12 kg

8. (d)

SVI =
$$\frac{V_{ob} (ml/l)}{X_{ob} (mg/l)} = \frac{V_{ob}}{X_{ob}} \times 100 \text{ m}l/g$$

 V_{ob} = Settled volume sludge per liter

$$= \frac{850}{2} = 425 \,\mathrm{m} \,l/l$$

$$V_{ob} = 3000 \,\text{mg/l}$$

SVI =
$$\frac{425}{3000} \times 1000 = 141.667 \simeq 142 \text{ ml/g}$$

9. (b)

$$S = \frac{Q_S S_S + Q_R S_R}{Q_S + Q_R}$$

$$\Rightarrow$$

$$20 = \frac{10(350) + Q_R(5)}{10 + Q_R}$$

$$Q_R = 220 \text{ MLD}$$

$$Q_R = \frac{220 \times 10^6}{86400}$$

$$Q_R = 2546.30 \text{ lit/sec} \approx 2546 \text{ lit/sec}$$

10. (d)

Statement I is false but II is true.

Coliforms are rod-shaped non-pathogenic bacteria.

11. (a)

$$k = \frac{\left[H^{+}\right]\left[CO_{3}^{2-}\right]}{\left[HCO_{3}^{-}\right]}$$

$$[H^{+}] = 10^{-10} \text{ M}$$

$$[CO_{3}^{2-}] = \frac{30 \times 10^{-3}}{60} M = 5 \times 10^{-4} \text{ M}$$

$$5 \times 10^{-11} = \frac{10^{-10} \times 5 \times 10^{-4}}{\left[HCO_{3}^{-}\right]}$$

$$[HCO_{3}^{-}] = 10^{-3} \text{ M}]$$

$$[HCO_{3}^{-}] \text{ in mg/}l = 61 \times 10^{-3} \times 10^{3} = 61 \text{ mg/}l$$
Bi-carbonate alkalinity = $\frac{61}{61} \times 50 = 50 \text{ mg/}l \text{ as CaCO}_{3}$

12. (c)

DO of mix =
$$\frac{9.2 \times 2 + 0.3 \times 0}{2 + 0.3} = 8 \,\text{mg/l}$$

 $D_0 = 9.2 - 8 = 1.2 \,\text{mg/l}$
 $BOD_u = 1.25 \,\text{BOD}_5 = 250 \,\text{mg/l}$
 $F = 3$
 $L = \frac{0 \times 2 + 0.3 \times 250}{2 + 0.3}$
 $L = 32.609 \,\text{mg/l}$
 $\left(\frac{L}{D_c F}\right)^{f-1} = f\left[1 - (f-1)\frac{D_0}{L}\right]$
 $\left[\frac{32.609}{D_C \times 3}\right]^2 = 3\left[1 - \frac{2 \times 1.2}{32.609}\right]$
 $D_C = 6.52 \,\text{mg/l}$
Minimum $DO = 9.2 - 6.52 = 2.68 \,\text{mg/l} \approx 2.7 \,\text{mg/l}$

$$\begin{array}{l} r = 15\% \\ r' = 2\% \\ P_{2021} = 2,00,0000 \\ \\ P_{2031} = P_{2021} + \left(\frac{r-r'}{100}\right) \times P_{2021} \\ \\ = 200000 + \left(\frac{15-2}{100}\right) \times 200000 = 2,26,000 \\ \\ P_{2041} = P_{2031} + \left(\frac{r-2r'}{100}\right) P_{2031} \\ \\ = 226000 + \left(\frac{15-4}{100}\right) \times 226000 \\ \\ P_{2041} = 250860 \end{array}$$

14. (a)

Grit chambers are mainly constructed to prevent the accumulation of inorganic particles in sludge digesters.

15. (b)

$$k = \frac{[HOC1]}{[H^+][OC1^-]}$$

Here concentration is in moles/litre

$$10^{7.4} = \frac{[HOC1]}{[10^{-7.4}][OC1^{-}]}$$

$$\Rightarrow$$
 [HOC1] = [OC1-]

Free residual chlorine = [HOCl] + [OCl-]

$$\Rightarrow \frac{2 \times 10^{-3}}{2 \times 35} = [HOCl^{-}] + [OCl^{-}]$$

$$\Rightarrow \qquad 2.857 \times 10^{-5} = 2[OCl^{-}]$$

$$\Rightarrow$$
 [OCl⁻] = 1.429 × 10⁻⁵ moles/litre

$$\Rightarrow$$
 [OCl⁻] = 1.429 × 10⁻⁵ × 51 × 10³ mg/l

$$\Rightarrow$$
 [OCl⁻] = 0.729 mg/l

Test sample Seeded sample Diluted sample $5 \, \mathrm{mL} \qquad 295 \, \mathrm{mL} \qquad 300 \, \mathrm{mL}$ Initial DO: $5 \, \mathrm{mg/l} \qquad 7 \, \mathrm{mg/L} \qquad x$ Final DO: $- \qquad - \qquad y$

$$x = \frac{5 \times 5 + 7 + 295}{300} = 6.967 \text{ mg/}l$$

Also,

x - y = 6.967 (after 5 days of incubation)

 \Rightarrow

 $y = 0 \,\mathrm{mg}/l$

: Final DO of diluted sample is zero.

Hence, the readings should be discarded.

17. (c)

Relative stability for a sample is given by,

$$s = \frac{O_2 \text{ available in effluent}}{\text{Total } O_2 \text{ required for 1st stage BOD}}$$

Carbonaceous demand (1st stage BOD) = Total oxygen demand - Nitrogenous demand = 110 - 60 = 50 mg/l

$$S = \frac{40}{50} \times 100 = 80\%$$

18. (b)

$$\cos \theta = \frac{0.5 - 0.25}{0.5} = \frac{0.25}{0.5} = \frac{1}{2}$$

$$\Rightarrow$$

$$\theta = \frac{\pi}{3}$$

Cross-sectional area of flow,

$$A = r^2 \left[\theta - \frac{\sin 2\theta}{2} \right]$$

$$\Rightarrow$$

$$A = \left(0.5^2\right) \left[\frac{\pi}{3} - \left\{\sin\left(2 \times \frac{\pi}{3}\right)\right\} \frac{1}{2}\right]$$

$$\Rightarrow$$

$$A = \frac{1}{4} \left[\frac{\pi}{3} - \frac{\sqrt{3}}{4} \right]$$

$$A = 0.1535 \text{ m}^2$$

Wetted perimeter of flow = $r(2\theta)$

$$= 0.5 \times 2 \times \frac{\pi}{3} = 1.047 \text{ m}$$

:. Hydraulic radius =
$$\frac{A}{P} = \frac{0.1535}{1.047} = 0.147 \text{ m}$$

19. (c)

Concentration of gas = 2.8 ppm

 \Rightarrow 10⁶ m³ air holds 2.8 m³ gas

 \Rightarrow 1 m³ air holds 2.8 × 10⁻⁶ m³ gas

∵ Ideal gas law is valid, ∴

PV = nRTP = 2 atm

 $V = 2.8 \times 10^{-6} \,\mathrm{m}^3$

T = 294 K

 $R = 82.05 \times 10^{-6} \text{ atm m}^3/\text{mol. K}$

 $2 \times 2.8 \times 10^{-6} = n \times 82.05 \times 10^{-6} \times 294$

 $n = 2.32146 \times 10^{-4} \text{ mol}$

(Note: The concentration is asked in 1 m³ of air)

$$n = 2.32146 \times 10^{-4} \times (10^{-2} \times 10^{2})$$

$$\Rightarrow \qquad \qquad n = 2.32146 \times 10^2 \,\mu \,\text{mol}$$

$$\Rightarrow$$
 $n = 232.146 \,\mu \,\text{mol}$

 \Rightarrow 1 m³ of air has 232.146 (\simeq 232.15) μ mol of gas.

20. (d)

:.

River	Waste water		
$Q_R = 60 \text{ m}^3/\text{s}$	$Q_w = 6 \text{ m}^3/\text{s}$		
DO = 7 mg/l	DO = 0 mg/l		
$BOD_5 = 9 \text{ mg/}l$	$BOD_5 = 210 \text{ mg/}l$		

Given data:

$$k_D = 0.5/\text{day}$$

$$k_R = 1/\text{day}$$

$$(DO)_{\text{sat}} = \frac{7}{0.8} = 8.75 \text{ mg/l}$$

$$(DO)_{\text{mix}} = \frac{60 \times 7 + 6 \times 0}{66} = 6.364 \text{ mg/l}$$

$$(BOD_5)_{\text{mix}} = \frac{60 \times 9 + 6 \times 210}{66} = 27.273 \text{ mg/l}$$
Initial DO deficit (D₀) = 8.75 - 6.364 = 2.386 mg/l

Ultimate BOD (L₀) = $\frac{(BOD_5)_{mix}}{1 - e^{-0.5 \times 5}} = \frac{27.273}{1 - e^{-2.5}} = 29.71 \text{ mg/l}$

Min DO occurs at critical time t_c where,

$$t_c = \frac{1}{k_R - k_D} \ln \left[\frac{k_R}{k_D} \left\{ 1 - D_0 \times \left(\frac{k_R - k_D}{k_D L_0} \right) \right\} \right]$$

$$\Rightarrow t_c = \frac{1}{1 - 0.5} \ln \left[\frac{1}{0.5} \left\{ 1 - 2.386 \times \left(\frac{1 - 0.5}{0.5 \times 29.71} \right) \right\} \right]$$

$$\Rightarrow$$
 $t_c = 1.219 \text{ days}$

Distance of critical DO deficit = $V \times t_c$ *:*.

$$= \frac{1 \times 1.219 \times 86400}{1000} \text{ km} = 105.3 \text{ km}$$

21. (d)

As per graph

12 ml of 0.02 NH₂SO₄ is used to neutralize alkalinity due to $\frac{1}{2}$ CO₃⁻² +OH⁻

i.e. in given 200 ml water sample, alkanity due to $\frac{1}{2}$ CO₃⁻² + OH⁻ is 12 mg

∴ In 1000 ml of water sample, alkanity due to $\frac{1}{2}$ CO₃⁻² + OH⁻ is $\frac{12}{250}$ ×1000 = 48 mg/lit

$$\therefore \frac{1}{2} \text{CO}_3^{-2} + \text{OH}^- = 48 \text{ mg/lit} \quad \text{as} \quad \text{CaCO}_3 \qquad \dots (1)$$

Now,

$$pH = 10.5$$
 $\therefore pOH = 14 - 10.5 = 3.5$
 $POH = -log[OH^-]$
 $POH = -log[$

$$\therefore \qquad \text{No. of mole } = \frac{\text{Weight}}{\text{Molecular weight}}$$

$$\Rightarrow 10^{-3.5} = \frac{\text{Weight}}{17}$$

$$\Rightarrow OH^{-} = 17 \times 10^{-3.5} \text{ gm}$$

$$\therefore \qquad \text{Number of gm. eq.} = \frac{\text{Given weight}}{\text{Equivalent weight}} = \frac{17 \times 10^{-3.5}}{(17/1)} = 10^{-3.5} \, \text{gm eq.}$$

:. Alkanity due to OH⁻ in terms of CaCO₃ = $10^{-3.5} \times 50 \times 1000 = 15.81$ mg/lit. as CaCO₃ Put in eq. (1),

Alkanity due to carbonate = $(48 - 15.81) \times 2 = 64.38 \text{ mg/lit.}$ as CaCO₃

 \Rightarrow

$$Q = 50000 \text{ m}^{3}/\text{day}$$

$$t_{d} = 30 \text{ s}$$

$$Volume of tank = Q t_{d}$$

$$= \frac{50000}{86400} \times 30 = 17.361 \text{ m}^{3}$$

$$P = \mu VG^{2}$$

$$P = 10^{-3} \times 17.361 \times (800)^{2}$$

$$P = 11111.04 \text{ Watt} = \frac{11111.04}{746} = 14.894 \text{ hp}$$

Shaft and motor are not 100% efficient i.e., they are efficient 80% and 90% respectively

$$P = \frac{14.894}{0.90 \times 0.80} = 20.686 \text{ hp} \simeq 20.7 \text{ hp}$$

23. (c)

We know
$$1 \mu g/m^3 = \frac{1 ppm \times molecular mass of pollutant}{l/mole of pullutant at given temperature and pressure} \times 10^3 l/m^3$$
 ...(1)

The value of l/mol (i.e. volume, in litres occupied by one molecule of pollutant gas) at 0°C and 1 atm pressure (i.e. 760 mm Hg) is equal to 22.4.

At other value of temperature and pressure, its value is governed by

$$\frac{V_1 P_1}{T_1} = \frac{V_2 P_2}{T_2}$$

$$V_1 = \text{Volume at 0°C of 1 atm pressure i.e. 22.4 } l/\text{mol}$$

$$P_1 = 760 \text{ mm Hg}$$

$$T_1 = 0°\text{C} = 273 \text{ K}$$

$$\therefore \frac{22.4 \times 760 \,\mathrm{mm \, of \, Hg}}{273^{\circ} \,\mathrm{K}} = \frac{V_2 \times 760 \,\mathrm{mm \, of \, Hg}}{(273^{\circ} + 20^{\circ}) \,\mathrm{K}}$$

$$\Rightarrow$$
 $V_2 = 22.4 \times \frac{293}{273} = 24.04 \ l/mol$

Put in eq.(1)

$$1 \,\mu g/m^3 = \frac{1ppm \times 64}{24.04} \times 10^3$$

$$\therefore 60 \,\mu g/m^3 = \frac{SO_2 \, in \, ppm \times 64 \times 10^3}{24.4}$$

$$\Rightarrow$$
 SO₂ in ppm = 0.023 ppm

24. (b)

Treated water =
$$25000 \text{ m}^3/\text{day}$$

 $25000 \times 10^3 \text{ lt/day} = 25 \text{ MLD}$

Required chlorines per day = 10 kg/day

or

So,

Chlorine required per litre =
$$\frac{10 \times 10^6}{25 \times 10^6}$$
 = 0.4 mg/lt.

The residual Cl_2 left = 0.22 mg/lt.

chlorine demand = 0.4 - .22 = 0.18 mg/lt.

Chlorine demand per day = $0.18 \times 25 \times 10^6 \times 10^{-6}$

$$= 4.5 \text{ kg/day}$$

25. (d)

Given,

$$L_e = 1.5 \text{ L}$$

$$\frac{L_e}{I_e} = \frac{1-\eta}{1-\eta_e}$$

 $(\eta = Porosity)$

$$1.5 = \frac{1 - 0.4}{1 - \eta_e}$$

$$\eta_e = 0.6$$

$$V_{\rm s} = \frac{(G-1)gd^2}{18v} = \frac{(2.65-1)\times981\times(0.066)^2}{18\times1.31\times10^{-2}}$$

$$V_s = 29.9 \text{ cm/sec}$$

$$\eta_e = \left(\frac{\overline{V}_s}{V_s}\right)^{0.22}$$

 $(\overline{V}_s = \text{Backwash velocity})$

$$0.6 = \left(\frac{\overline{V}_{s}}{29.9}\right)^{0.22}$$

$$\overline{V}_s = 2.933 \text{ cm/sec}$$

26. (a)

$$\frac{1}{100}(15\times6+24+6+33\times5+4.2\times0.5+0.49\times2+0.13\times0.5\\+1.18+0.5+0.35\times0.5+17.97+60+1.67+6+2.01\times8)$$

$$= 15.9739 \text{ kg}$$

Mass of solids $= 100 - 15.9739 = 84.0261 \text{ kg}$

Total moisture (on dry basis) =
$$\frac{\text{Mass of water}}{\text{Mass of solids}} = \frac{15.9739 \times 100}{84.0261} = 19.01\%$$

27. (d)

Sample size (1 ml)

Number of positive tubes =
$$\frac{288}{360} \times 5 = 4$$

Sample size (0.1 ml)

Number of positive tubes =
$$\frac{144}{360} \times 5 = 2$$

Sample size (0.01 ml)

Number of positive tubes =
$$\frac{72}{360} \times 5 = 1$$

Positive combination is 4 - 2 - 1 and negative combination is 1 - 3 - 4.

But dilution of standard used is 10 ml, 1 ml, 0.1 ml.

So, MPN index for negative results = $38 \times 10 = 380$

28. (c)

Statement 2: Sonoscope is used for detection of leakage in underground water mains.

Statement 3: In grid system, one main pipe runs through centre and branches and laterals run in grid pattern which are interconnected.

29. (b)

Let *x* g of NaOH be added to solution to change pH from 7 to 9.

$$(pOH)_{initial} = 14 - 7 = 7$$

 $(pOH)_{final} = 14 - 9 = 5$

$$[OH^-]_{initial} = 10^{-7} \text{ mol/lt.}$$

$$[OH^{-}]_{initial} = 10^{-7} \text{ mol/lt.}$$

 $[OH^{-}]_{final} = 10^{-5} \text{ mol/lt.}$

According to question,

For 1 litre of solution

$$\frac{x}{40} + 10^{-7} = 10^{-5} \qquad \text{(Molecular weight of NaOH = 40 g/mol)}$$

$$\Rightarrow \qquad \frac{x}{40} = 10^{-5} - 10^{-7} = 99 \times 10^{-7}$$

$$\Rightarrow \qquad x = 99 \times 40 \times 10^{-7} \text{ g}$$

$$x = 99 \times 4 \text{ } \mu\text{g}$$

$$= 396 \text{ } \mu\text{g}$$

 \therefore 396 µg/l of NaOH is required to change pH from 7 to 9.

30. (a)

C	% by	%	Energy	Dry	Total	
Component	mass	Moisture	(kJ/kg)	(mass(kg))	Energy(kJ)	
Food waste	20	70	4650	6	93000	
Paper	40	6	16750	37.6	670000	
Card board	15	5	16300	14.25	244500	
Plastics	7.5	2	32600	7.35	244500	
Garden trimming	7.5	60	6500	3	48750	
Wood	5	20	18600	4	93000	
Tin cans	5	3	700	4.85	3500	
Total				77.05		

Moisture content =
$$\left(\frac{100 - 77.05}{100}\right) \times 100 = 22.95\%$$

Total energy 1397250 12072.5

Unit energy content = $\frac{\text{Total energy}}{\text{Total weight}} = \frac{1397250}{100} = 13972.50 \text{ kJ/kg}$

Energy content on ash-free dry basis *:*.

$$= 13972.50 \left(\frac{100}{100 - 22.95 - 5} \right) = 19392.78 \text{ kJ/kg}$$