
1. (c)

2. (d)

3. (b)

4. (c)

5. (d)

6. (d)

7. (a)

8. (c)

9. (a)

10. (c)

11. (b)

12 (c)

13. (d)

14. (a)

15. (d)

16. (b)

17 (d)

18. (c)

19. (a)

20. (a)

21. (c)

22. (d)

23. (c)

24. (d)

25. (c)

26. (c)

27. (d)

28. (c)

29. (d)

30. (d)

ANSWER KEY

COMPLIER DESIGN

COMPUTER SCIENCE & IT

Date of Test : 17/06/2025

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST S.No.:01SKCS_ABCDEFGHI_17625

© Copyright :www.madeeasy.in

8 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

DE TAILED EXPL ANATIONS

1. (c)
Simple two-pass assembler:
1. Allocates space for the literals.
2. Computers the total length of program (syntax analysis).
3. Builds the symbol table for the symbols and their values.

2. (d)
Relation between LL(1), SLR(1) and CLR(1) and LALR(1) given below:

LL(1)

CLR(1)

LALR(1)

SLR(1)

S1 is false, S2 is true and S3 is false.

3. (b)
In both stack and heap allocation, memory allocated at runtime.
Static allocation does not support recursion. However, in stack allocation, storage is organized as
a stack and activation records are pushed and popped as activation begin and end respectively.

4. (c)
E and F both have left recursion rule.
So *, + both are left associative.

5. (d)
S → Aab
A → Acbd

Here, A → Ac has left recursion removing it we have
A → bd A′
A′ → cA′

 So, the resultant grammar is
S → Aa b
S → bd A′
A′ → cA′ ∈

6. (d)
FIRST {B} = {b, ∈}

FOLLOW {B} = (FIRST (C) – {∈}) ∪ FOLLOW (A) ∪ FIRST (b)
= {c} ∪ {$} ∪ {b}
= {b,c, $}

© Copyright : www.madeeasy.in

9• Compiler DesignCompiler DesignCompiler DesignCompiler DesignCompiler DesignCS

7. (a)

1 1 0 1 1 0 1 1

3

6

3

2 2–1 1

8. (c)
x is inherited.
y is synthesized.

9. (a)
a * a + a

E E +

a a

* E E

a a

E EE+

E

a

E *

E

a

Since, two parse trees are possible.
Hence, grammar is ambiguous.

10. (c)

int main ()
1 2 3 4

{
5

int m ;
6 7 8 9

= 10
10

int

n

n

=

;

;

,

++

n1

m
11

16

12

17

13

18

14

19

15

20

n1 = ;++m
21 22 23 24 25
n ;––
26 27 28

n1 ;––
29 30 31
n ;–=
32 33 35

n1
34

printf ;,
36

n(
37

"% "d
38 39 40

)
41 42

return
43

0
44

;
45

}
46

Number of tokens are 46.

© Copyright :www.madeeasy.in

10 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

11. (b)

S S′ → ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅

S S#cS
S SS
S S@
S <S>
S a
S b
S c

S < S→ ⋅
S S#cS
S SS
S S@
S <S>
S a
S b
S c

→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅

<

Total 8 items present

<

12 (c)
Stack contains only a set of viable prefixes.

13. (d)

a = 10
b = 15

Start

End

a a b = +
b a b
a a b

 = –
 = –

if == a b
Yes

Here, X = 5, Y = 5
So, X + Y = 10

14. (a)

A

×B C

/C D S.pop()

id S.top()

1

id S.top()

2

A S.top()

B × C S.push(5)

id S.top()

3

id S.top()

4

S.push(5)

© Copyright : www.madeeasy.in

11• Compiler DesignCompiler DesignCompiler DesignCompiler DesignCompiler DesignCS

1

3

2

3

2

5

3

2

5

5

3

2

15. (d)
3 – 2 * 4 $ 2 $ 3

= (((3 – 2) * 4) $ 2) $ 3
= ((1 * 4) $ 2) $ 3
= (4 $ 2) $ 3
= 163 = 4096

16. (b)
Checkit out using following code.
MOV a, R1
opr b, R1 t1 = a + b
MOV d, R2
opr c, R2 t2 = c + d
opr e, R2 t3 = e – t2
MOV t3, R1
opr t1, R1 t4 = t1 – t3
Minimum number of MOV instructions required = 3.

17 (d)
IN = USE ∪ {OUT – DEF}

OUT = ∪ IN (successor)

B1

B2

B3

B4

Block

{ , }

{ , }

{ }

m n

j

a

i

φ

USE

{ , , }

{ , }

a j

ji

i

i

{ }

{ }

a

DEF

{ , }

{ , }

{ }

m n

j

a

i

φ

IN

{ , }ji

i

{ }

{ }

{ , }

a

a

j

OUT

{ , }m n

φ

{ , , }

{ , }

a j

a j

i

IN

{ , , }

{ , }

{ , }

{ , , }

a j

a j

a j

a j

i

i

OUT

{ , }m n

{ , , }

{ }

{ , }

a j

j

a j

i

IN

{ , , }

{ , }

{ , }

{ , , }

a j

a j

a j

a j

i

i

OUT

FIRST GO SECOND GO THIRD GO

∴ The variables that are live at exit (i.e. live out) of each basic block are
B1 = {a, i, j}, B2 = {a, j}
B3 = {a, j}, B4 = {a, i, j}

18. (c)

S

A a b

B a b{ , , }∈

{ , , }a b ∈

{ , , }∈

{ , , $}a b

{ , }

{ , , $}

a b

a b

FIRST FOLLOW

© Copyright :www.madeeasy.in

12 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

LL(1) Parsing table:

S S aAbB
S

A A S

B B S

→
→ ∈

→

→

S bAbB
S

A S

B S

→
→ ∈

→

→

S

B S

→ ∈

→

a b $

There are only 2 entries in which there are multiple productions.

19. (a)
• Statement I and IV is correct.
• Type checking is done at semantic analysis phase.
• Target code generation is dependent based on the machine.
• Symbol table is accessed during lexical, syntax and semantic analysis phase.

20. (a)

S aS .
S b→ .

→

S b→ . S aS→ .

S aS
S b

→
→

 .
 .

S a.S→

a

b Sb

a S aS b→

Some possible stack contents are
aaS, ab, b, etc.

21. (c)
Here × is highest and + is next highest.
Associativity does not matter.
Select the best way so that less number of temporary variables will be created.
a + b × c + d – e – a + b × c

= ((a + (b × c)) + d) – e – (a + (b × c))
= (((a + (b × c)) + d) – e) – (a + (b × c))

Equivalent 3-address code is:
t1 = b × c
t2 = a + t1
t1 = t2 + d
t1 = t1 – e
t1 = t1 – t2

∴ Only two temporary variables are used.

© Copyright : www.madeeasy.in

13• Compiler DesignCompiler DesignCompiler DesignCompiler DesignCompiler DesignCS

22. (d)

+

P

/

+

X Y

Z

Total 8 edges

23. (c)
t1 = a * b
t2 = –t1
t3 = c + d
t4 = –(a * b) + (c + d)
t1 = a + b
t2 = t1 + t3
t5 = –(a * b) + (c + d) – (a + b + c + d)

24. (d)
• Statement S1 and S2 are correct.
• Statement S3 is incorrect. Heap and stack both are present in main memory.

25. (c)

S S′ → .
S Aa

bAC
dC
bda

A d

 →

 →

 .
.
.
.

 .
S b AC → .

b da
A d

.
 . →

S bd a → .
A d → .

S d C → .
d.

S A a → .

S dC → .

S S → .′

S Aa → .

S bA C → .
b

d

d

A

S

S bda → .

Given grammar is not SLR (1), but LAR (1).

26. (c)
Static scoping means that x refers to the x declared innermost scope of declaration. Since ‘h’ is
declared inside the global scope, the innermost x is the one in the global scope (it has no access to
the x’s in ‘f ’ and ‘g’, since it was not declared inside them), so the program prints 23 twice.
Dynamic scoping means that x refers to the x declared in the most recent frame of the call stack.
‘h’ will use the x from either ‘f ’ or ‘g’, whichever one that called it so the program would print 22
and 45.

© Copyright :www.madeeasy.in

14 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

27. (d)
SLR Parser:

S′
S .V
S .aSc
V .bV
V .d

 →
 →
 →
 →

→ .S

a

V

S S.′ →
S

S V. →

S
S .V
S .aSc
V .d
V .bV

 →
 →
 →
 →

→ a.Sc

V

V d. →

d

S aS.c →
S

S aSc. →
c

V
V .d
V .bV

 →
 →

→ b.V

V bV. →

V

b
b

d
db

a

Zero inadequate states since no SR conflict or RR conflict is present.

28. (c)
Since in grammar every # per for multiplication between two operands. So, $ much represents
substraction to get 512.
8 × 12 – 4 × 16 = 12 × 4 – 2

8 × 8 × 4 × 2 = 23 × 23 × 22 × 21

= 29

= 512

29. (d)
Recursion can not be implemented using static allocation.
Recursion can be implemented using dynamic allocation.

30. (d)

(a) i%2 is inner loop invariant, it can be moved before inner loop.
(b) 4*j is common sub-expression appeared in two statements.
(c) 4*j can be reduced to j<<2 by strength reduction.
(d) There is no dead code in given code segment. So there is no scope of dead code elimination in this code.

Hence only option (d) is FALSE.

