

Duration : 1:00 hr.
Maximum Marks: 50

Read the following instructions carefully

1. This question paper contains $\mathbf{3 0}$ objective questions. Q.1-10 carry one mark each and Q.11-30 carry two marks each.
2. Answer all the questions.
3. Questions must be answered on Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely using a good soft eraser.
4. There will be NEGATIVE marking. For each wrong answer $1 / 3$ rd of the full marks of the question will be deducted. More than one answer marked against a question will be deemed as an incorrect response and will be negatively marked.
5. Write your name \& Roll No. at the specified locations on the right half of the ORS.
6. No charts or tables will be provided in the examination hall.
7. Choose the Closest numerical answer among the choices given.
8. If a candidate gives more than one answer, it will be treated as a wrong answer even if one of the given answers happens to be correct and there will be same penalty as above to that questions.
9. If a question is left blank, i.e., no answer is given by the candidate, there will be no penalty for that question.

Q.No. 1 to Q.No. 10 carry 1 mark each

Q. 1 The average value of the periodic signal shown below is

(a) 2
(b) 4
(c) 6
(d) 8
Q. 2 In the circuit shown in figure, the switch S is closed at time $(t=0)$. The voltage across the inductance $\left(V_{L}(t)\right)$ at $t=0^{+}$, is

(a) 2 V
(b) 4 V
(c) -6 V
(d) 8 V
Q. 3 Consider the circuit shown below

The current flowing through 50 V source is
(a) 30 A
(b) 20.66 A
(c) 5.48 A
(d) 2.34 A
Q. 4 Determine the voltage that must be applied at x - y terminal such that the voltage across 4Ω is 5 V .

(a) 5 V
(b) 10.417 V
(c) 20.123 V
(d) 25.72 V
Q. 5 For the parallel $R C$ circuit shown below, if $R=1$ Ω, and $C=1 \mathrm{~F}$. The value of $Z_{21}(s)$ will be

(a) $s+1$
(b) $\frac{1}{s}+1$
(c) $\frac{-1}{s+1}$
(d) $1-\frac{s}{s+1}$
Q. 6 If the current in a 20Ω resistor is given by

$$
i=4+5 \sin \omega t-3 \cos 3 \omega t
$$

The power consumed by the resistor is
(a) 1 kW
(b) 1.865 W
(c) 660 W
(d) 720 W
Q. 7 Consider the circuit shown in the figure below:

the equivalent resistance $\left(R_{\text {eq }}\right)$ is
(a) 10.5Ω
(b) 11.2Ω
(c) 22.4Ω
(d) 36.5Ω
Q. 8 Consider the circuit shown in the figure below:

If the $I_{0}(j \omega)$ is current flowing in the circuit for particular value of angular frequency ω, then the value of $\left|\frac{I_{O}(j)}{I_{o}(5 j)}\right|$ is equal to
(a) 2.1
(b) 3.6
(c) 4.2
(d) 8.8
Q. 9 Consider the circuit shown in the figure below:

the value of Y_{21} is equal to
(a) -0.25 s
(b) -0.5 s
(c) -0.75 s
(d) -1 s
Q. 10 Consider the circuit shown in figure below:

Assume $V_{c}\left(0^{-}\right)=5 \mathrm{~V}$. If $V_{c}(t)=\frac{5}{e} V$ at $t=0.1$ sec, then the value of C is
(a) $1.2 \mu \mathrm{~F}$
(b) $1.5 \mu \mathrm{~F}$
(c) $2.5 \mu \mathrm{~F}$
(d) $5 \mu \mathrm{~F}$

Q. No. 11 to Q. No. 30 carry 2 marks each

Q. 11

If the switch is at position ' 1 ' for a long time and at $(t=0)$ it is moved to position ' 2 ', then the current $i(t)$ for $t>0$ will be
(a) $\left(5 e^{-t}+25 e^{t}\right) \mathrm{A}$
(b) $\left(5+25 t e^{-t}\right) \mathrm{A}$
(c) $\left(5 t e^{-t}\right) \mathrm{A}$
(d) $\left(25 t e^{-t}+5\right) \mathrm{A}$
Q. 12 The time constant of the circuit shown below will be

(a) $R C$
(b) $2 R C$
(c) $\frac{R C}{2}$
(d) $\frac{3 R C}{2}$
Q. 13 For the circuit shown below, the network N has Z parameter matrix of $\left[\begin{array}{ll}4 & 8 \\ 1 & 3\end{array}\right]$. If the transformer used in the circuit is ideal, then the power delivered to the 1Ω resistance will be

(a) 55.56 mW
(b) 2.25 W
(c) 4.5 W
(d) None of these
Q. 14 The hybrid parameter of the network N shown below are $h_{11}=2 \Omega, h_{12}=4, h_{21}=-5$ and $h_{22}=$ $2 \mho$. The supply voltage, if the power dissipated in the load resistor $R_{L}(=4 \Omega)$ is 25 W and R_{s} is given by 2Ω is

(a) 11 V
(b) 22 V
(c) 43 V
(d) 58 V
Q. 15 For a series RLC circuit the magnitude of frequency at which the drop across the capacitor is maximum will be
(a) $\sqrt{\frac{1}{L C}-\left(\frac{R C}{L}\right)^{2}} \mathrm{rad} / \mathrm{sec}$
(b) $\frac{1}{\sqrt{L C}} \mathrm{rad} / \mathrm{sec}$
(c) $\sqrt{\frac{1}{L C}-\frac{R^{2}}{2 L^{2}}} \mathrm{rad} / \mathrm{sec}$
(d) $\sqrt{\frac{1}{L C}-R^{2} C^{2}} \mathrm{rad} / \mathrm{sec}$
Q. 16 In below figure the capacitor initially has a charge of $10 C$. The current in the circuit after two seconds the switch S is closed will be

(a) 5.41 A
(b) 7.21 A
(c) 8.31 A
(d) 9.15 A
Q. 17 Consider the circuit shown below

The maximum power absorbed by the load is
(a) 390.625 W
(b) 400.125 W
(c) 500.125 W
(d) 350.625 W
Q. 18 Consider the circuit shown below

The Thevenin's equivalent resistance across the terminals a and b is
(a) 10Ω
(b) 20Ω
(c) 30Ω
(d) 60Ω
Q. 19 A series resonance circuit has a source frequency of 5 kHz and source impedance of $(2+j 4) \Omega$. The load impedance being ($10-j$ $\left.X_{C}\right) \Omega$. The value of C such that the power consumed by the resistor is maximum is
(a) $1.45 \mu \mathrm{~F}$
(b) $7.95 \mu \mathrm{~F}$
(c) $2.84 \mu \mathrm{~F}$
(d) $9.87 \mu \mathrm{~F}$
Q. 20 The voltage applied to series $R-L$ circuit at $t=$ t_{0} sec is given by $10 \cos \left(\frac{t}{2}+45^{\circ}\right) \mathrm{V}$. The value of resistance is 1Ω and the value of inductance
is 2 H . The value of t_{0} to obtain the transient free response is
(a) $\frac{\pi}{4} \mathrm{sec}$
(b) $\frac{\pi}{2} \mathrm{sec}$
(c) $\pi \mathrm{sec}$
(d) $2 \pi \mathrm{sec}$
Q. 21 Find the transfer function $\frac{V_{0}(s)}{I(s)}$ for the network shown

(a) $\frac{2 s(s+1)}{s^{2}+3 s+1}$
(b) $\frac{2(s+1)}{s^{2}+3 s+1}$
(c) $\frac{8 s(s+1)}{2 s^{2}+6 s+1}$
(d) $\frac{2 s(s+1)}{2 s^{2}+6 s+1}$
Q. 22 For the two port network N shown below in figure Z parameter matrix is $\left[\begin{array}{ll}2 & 1 \\ 1 & 4\end{array}\right]$. The value of I_{1} in Amperes is

(a) 12
(b) 21
(c) 24
(d) 28
Q. 23 In the figure shown, all elements used are ideal. For time $t<0, S_{1}$ remain closed and S_{2} open. At $t=0, S_{1}$ is opened and S_{2} is closed. If the voltage $V_{C_{2}}$ across the capacitor C_{2} at $t=0^{-}$is zero, the voltage across the capacitor combination at $t>0$ will be

(a) $1 / 2 \mathrm{~V}$
(b) 1 V
(c) $3 / 2 \mathrm{~V}$
(d) $5 / 2 \mathrm{~V}$
Q. 24 Consider the circuit shown in the figure below:

The value of I_{0} is equal to
(a) $5.831 \angle 149.03^{\circ}$
(b) $2 \angle 180^{\circ}$
(c) $6.913 \angle 132.1^{\circ}$
(d) $2.915 \angle-30.96^{\circ}$
Q. 25 For the circuit shown below the equivalent impedance seen across the terminals A and B is

(a) 5Ω
(b) 8Ω
(c) $j 8 \Omega$
(d) $(7+j 10) \Omega$
Q. 26 In the figure shown below, the switch S is moved from position 1 to 2 at time $t=0$. Just before the switch is thrown, the initial conditions are $i_{L}\left(0^{-}\right)=2 \mathrm{~A}$ and $V_{c}\left(0^{-}\right)=2 \mathrm{~V}$. Then the current $i(t)$ for $t>0$ is

(a) $\left(e^{t}-e^{-2 t}\right) \mathrm{A}$
(b) $\left(e^{-t}-e^{-2 t}\right) \mathrm{A}$
(c) $\left(e^{-t}+e^{-2 t}\right) \mathrm{A}$
(d) $\left(e^{t}+e^{2 t}\right) \mathrm{A}$
Q. 27 The resonant frequency of a series RLC circuit is 1.5 MHz with the resonating capacitor set at 150 pF . If the bandwidth is 10 kHz , then the effective resistance of the circuit would be (approximately)
(a) 1.25Ω
(b) 2.25Ω
(c) 3.25Ω
(d) 4.71Ω
Q. 28 A voltage signal $v(t)$ is applied to a capacitor with capacitance equal to $10 \mu \mathrm{~F}$. The voltage wave is shown in the figure below. Which of the following plot is correct for the current $i(t)$ through the capacitor?

Q. 29 Consider the circuit shown in the figure below:

Assuming 'a' to be a positive non zero number, then which of the following statement is correct?
(a) Z-parameter does not exists for all values of 'a'
(b) Z-parameter does not exists for ' a ' = 3
(c) Z-parameter does not exists for ' a ' = 8
(d) Z-parameter exists for all positive value of 'a'
Q. 30 An RLC circuit along with its phase diagram is shown in figure below,

Figure -1

Figure - 2

If $L=C$, then the minimum value of $R_{1}+R_{2}$ is
(a) 2.63Ω
(b) 6.33Ω
(c) 21.4Ω
(d) 19Ω

CLASS TEST

India's Best Institute for IES, GATE \& PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

NETWORK THEORY

ELECTRONICS ENGINEERING

Date of Test: 29/06/2024

1.	(a)	7.	(b)	13.	(b)	19.	(b)	25.
2.	(b)	(b)	(a)	14.	(d)	20.	(c)	26.

DETAILED EXPLANATIONS

1. (a)

The average value of periodic signal can be calculated by considering one time period

$$
=\frac{\text { Total area under the graph for one period }}{T_{0}}
$$

Total area under the graph for one period $=$ Area $1+$ Area $2+$ Area $3+$ Area 4
here

$$
\text { Area } 1=\text { Area } 2=\text { Area } 3=\text { Area } 4=4
$$

and $T_{0}=8 \mathrm{sec}$
Average value $=\frac{4+4+4+4}{8}=\frac{16}{8}=2$

2. (b)

Before closing the switch, the circuit was not energized, therefore, current through inductor and voltage across capacitor are zero.
After closing the switch, at $t=0^{+}$inductor acts as open-circuit and capacitor acts as short-circuit. Equivalent circuit at $t=0^{+}$

$$
\begin{aligned}
I & =\frac{10}{3+4 \| 4}=2 \mathrm{~A} \\
V_{L}\left(0^{+}\right) & =I \times(4 \| 4) \\
& =2 \times 2=4 \mathrm{~V}
\end{aligned}
$$

3. (c)
using source transformation

applying KCL at V

$$
\begin{aligned}
& \frac{V-50}{5}+\frac{V-20}{2}+\frac{V-10}{3}=0 \\
& \frac{6 V-300+15 V-300+10}{30} V-100 \\
& 31 V-700=0 \\
& \text { or } \quad \begin{aligned}
V & =\frac{700}{31}=22.58 \mathrm{~V} \\
i & =\frac{50-V}{5} \\
& =\frac{50-22.58}{5}=5.48 \mathrm{~A}
\end{aligned} \\
& \begin{aligned}
5
\end{aligned} \\
&=0
\end{aligned}
$$

4. (b)

$$
\begin{aligned}
R_{\mathrm{eq}} & =4 \Omega+1 \Omega+(5 \| 10) \Omega \\
& =5 \Omega+\left(\frac{5 \times 10}{15}\right) \Omega \\
& =5+\frac{10}{3}=\frac{25}{3} \Omega
\end{aligned}
$$

Also from (b)

$$
\begin{aligned}
I & =\frac{5}{4} \mathrm{~A} \\
V_{x y} & =\frac{5}{4} \times \frac{25}{3}=10.417 \mathrm{~V}
\end{aligned}
$$

$$
\therefore \quad V_{x y}=\frac{5}{4} \times \frac{25}{3}=10.417 \mathrm{~V}
$$

5. (d)

Converting the network into s-domain

$$
\begin{array}{ll}
V_{2}(s) & =I_{1}(s)\left(\frac{R \times \frac{1}{C s}}{R+\frac{1}{C s}}\right) \\
\text { or } \quad & \frac{V_{2}(s)}{I_{1}(s)}
\end{array}=\frac{R}{R C s+1}=\frac{1}{\left(s+\frac{1}{R C}\right)}, ~ \begin{array}{ll}
Z_{21}(s) & =\frac{V_{2}(s)}{I_{1}(s)}=\frac{1}{\left(s+\frac{1}{R C}\right)}=\frac{1}{1(s+1)} \\
Z_{21}(s) & =\frac{1}{(s+1)}
\end{array}
$$

6. (c)

$$
\begin{aligned}
P & =P_{0}+P_{1}+P_{2} \\
& =4^{2} \times 20+\left(\frac{5}{\sqrt{2}}\right)^{2} \times 20+\left(\frac{3}{\sqrt{2}}\right)^{2} \times 20 \quad\left[\because I_{\mathrm{rms}}=\frac{I_{\max }}{\sqrt{2}}\right] \\
& =(16+12.5+4.5) \times 20=660 \mathrm{~W}
\end{aligned}
$$

7. (b)

The resistance $6 \Omega \| 3 \Omega$ and $12 \Omega \| 4 \Omega$ also 1Ω is in series with 5Ω, thus, the circuit can be redrawn as

$$
\begin{array}{ll}
\therefore \quad & R_{\text {eq }}=10 \Omega+2 \Omega \|(1+3 \Omega \| 6 \Omega) \\
R_{\text {eq }}=11.2 \Omega
\end{array}
$$

8. (a)

$$
\begin{array}{rlrl}
& Z_{L} & =j \omega L=j \Omega \\
& & Z_{C} & =\frac{1}{j \omega C}=\frac{1}{j(1)(0.05)}=-j 20 \Omega \\
& & Z_{\mathrm{eq}} & =j+2 \|(-j 20)=1.98+j 0.802 \Omega \\
\text { and } & Z_{L}(5 j) & =5 j \Omega \\
\therefore & Z_{C}(5 j) & =-j 4 \Omega \\
\therefore & Z_{\mathrm{eq}}(j 5) & =j 5+2 \|(-j 4)=1.6+j 4.2 \Omega
\end{array}
$$

Now,

$$
I(j \omega) \propto \frac{1}{Z(j \omega)}
$$

$$
\therefore \quad\left|\frac{I_{o}(j)}{I_{o}(j 5)}\right|=\frac{Z(j 5)}{Z(j)}=\left|\frac{1.6+j 4.2}{1.98+j 0.802}\right|=2.104
$$

9. (a)

$$
\begin{aligned}
I_{1} & =\frac{V_{x}}{2}+\frac{V_{x}}{4}+2 I_{1} \\
-I_{1} & =0.75 V_{x} \\
I_{2} & =-\frac{V_{x}}{4}-2 I_{1}=-\frac{V_{x}}{4}+1.5 V_{x}=1.25 V_{x}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Now, } & V_{1}=8 I_{1}+V_{1} \\
& V_{1}
\end{array}=-6 V_{x}+V_{x}=-5 V_{x},
$$

10. (c)

Voltage across capacitor

$$
\begin{aligned}
\quad V_{c}(t) & =V_{\text {final }}+\left(V_{\text {initial }}-V_{\text {final }}\right) e^{-t / R C} \\
& =0+(5-0) e^{-t / R C} \\
\text { But given, } \quad & \\
v_{c}(t) & =\frac{5}{e}=5 e^{-t / R C} \\
\frac{5}{e} & =5 e^{-(0.1 / 40 \mathrm{k} \Omega \times C)} \\
\therefore \quad \frac{0.1}{40 \mathrm{k} \Omega \times C} & =1 \\
\therefore \quad C & =2.5 \mu \mathrm{~F}
\end{aligned}
$$

11. (c)

At $\left(t=0^{-}\right)$

At $\left(t=0^{+}\right)$

$$
I(s)=\frac{10 / s}{4+2 s+\frac{2}{s}}=\frac{10 / s}{\frac{4 s+2 s^{2}+2}{s}}=\frac{10}{2\left(s^{2}+2 s+1\right)}
$$

$$
I(s)=\frac{5}{(s+1)^{2}}
$$

$$
i(t)=5 t e^{-t} u(t) \mathrm{A}
$$

12. (b)

The time constant of an $R C$ circuit is $\tau=R_{\text {eq }} C_{\text {eq }}$
Calculation of $C_{\text {eq }}$

Calculation of $R_{\text {eq }}$

It is Wheatstone bridge.

$$
\begin{aligned}
\left(R_{\text {eq }}\right)_{\text {Half circuit }} & =\frac{4 R \times 2 R}{6 R}=\frac{4 R}{3} \\
R_{\text {eq }} & =\left(R_{\text {eq }}\right)_{\text {Half circuit }} \|\left(R_{\text {eq }}\right)_{\text {Half circuit }} \\
& =\left(\frac{4 R}{3}\right) \|\left(\frac{4 R}{3}\right)=\left(\frac{2 R}{3}\right) \\
\therefore \quad \tau & =R_{\text {eq }} C_{\text {eq }} \\
& =\frac{2 R}{3} \times 3 C=2 R C
\end{aligned}
$$

13. (b)

Network ' N ' can be replaced as

$$
R_{e q}=(1) \times\left(\frac{3}{1}\right)^{2}=9 \Omega
$$

Applying KVL at loop (1)

$$
\begin{array}{rlrl}
& & 20 & =4 I_{1}+8 I_{2} \\
\text { also } & V_{2} & =-9 I_{2}=I_{1}+3 I_{2} \\
\Rightarrow & I_{1} & =-12 I_{2} \\
& 20 & =4\left(-12 I_{2}\right)+8 I_{2} \\
& 20 & =-40 I_{2} \\
\Rightarrow & & I_{2} & =-0.5 \mathrm{~A} \\
& I_{1} & =-12(-0.5)=6 \mathrm{~A}
\end{array}
$$

Now,

$$
\begin{array}{rlrl}
& & \frac{I_{\text {primary }}}{I_{\text {secondary }}} & =\frac{1}{3} \\
\Rightarrow \quad 3 I_{\text {primary }} & =I_{\text {secondary }} \\
\Rightarrow \quad 3\left(-I_{2}\right) & =I_{3} \\
\Rightarrow \quad & I_{3} & =1.5 \mathrm{~A}
\end{array}
$$

$$
\text { Power delivered to } \begin{aligned}
\Omega & =\left(I_{3}\right)^{2} \times R_{L}=(1.5)^{2} \times 1 \\
& =2.25 \mathrm{~W} \text { atts }
\end{aligned}
$$

14. (d)

The h-parameter

$$
\begin{aligned}
V_{1} & =2 I_{1}+4 V_{2} \\
I_{2} & =-5 I_{1}+2 V_{2}
\end{aligned}
$$

Power dissipated in R_{L}

$$
\begin{array}{ll}
& P_{L}=\frac{V_{2}^{2}}{R_{L}}=25 \mathrm{~W} \\
\therefore & V_{2}=\sqrt{25 \times 4}=10 \mathrm{~V} \\
\because & V_{2}=-I_{2} R_{L} \\
\therefore & I_{2}=-2.5 \mathrm{~A}
\end{array}
$$

substituting the values

$$
\begin{aligned}
\text { we get } & V_{1} & =2 I_{1}+40 \\
& -2.5 & =-5 I_{1}+20 \\
\therefore & I_{1} & =4.5 \mathrm{~A} \text { and }
\end{aligned}
$$

49 V

$$
\begin{array}{ll}
\because & I_{1}=\frac{V_{s}-V_{1}}{2}=4.5 \\
\Rightarrow & V_{s}=58 \mathrm{~V}
\end{array}
$$

15. (c)

For series RLC circuit,

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}
$$

The circuit current

$$
I=\frac{V}{Z}
$$

\therefore The drop across the capacitor C
i.e.

$$
\begin{aligned}
& V_{C}=I X_{C}=\frac{V}{Z} X_{C} \\
& V_{C}^{2}=\frac{V^{2} X_{C}^{2}}{Z^{2}}=\frac{V^{2}}{(\omega C)^{2}\left[R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}\right]}
\end{aligned}
$$

For maximum voltage drop

$$
\begin{aligned}
V_{C \max } & =\frac{d V_{C}}{d \omega}=0 \\
& =\sqrt{\frac{1}{L C}-\frac{R^{2}}{2 L^{2}}} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

16. (a)

Using KCL

$$
\text { at } t=2 \mathrm{sec}
$$

$$
\begin{aligned}
100 & =R \frac{d Q}{d t}+\frac{Q}{C} \\
100 C & =R C \frac{d Q}{d t}+Q \\
\int_{Q_{0}}^{Q} \frac{d Q}{100 C-Q} & =\frac{1}{R C} \int_{0}^{t} d t \\
(-\ln (100 C-Q))_{Q_{0}}^{Q} & =\frac{t}{R C} \\
\ln \frac{(100 C-Q)}{\left(100 C-Q_{0}\right)} & =-\frac{t}{R C} \\
100 C-Q & =\left(100 C-Q_{0}\right) e^{-t / R C} \\
i=\frac{d Q}{d t} & =\left(\frac{100 C-Q_{0}}{R C}\right) e^{-t / R C}=\left(\frac{50-10}{1}\right) e^{-t / R C} \\
i & =40 e^{-t / R C} \\
i & =40 e^{-2}=5.413 \mathrm{~A}
\end{aligned}
$$

17. (a)
$Z_{\text {Th }}:$

$$
Z_{\mathrm{Th}}=\frac{(10+j 10)(-j 10)}{10+j 10-j 10}=10-j 10
$$

$V_{\text {Th }}$:

$$
\frac{V_{T h}-25}{10+j 10}+\frac{V_{T h}}{-j 10}=10 \angle 90^{\circ}
$$

$$
\frac{V_{\text {Th }}}{10+j 10}-\frac{25}{10+j 10}-\frac{V_{T h}}{j 10}=10 j
$$

$$
\left(V_{\text {Th }}\right) j 10-250 j-10 V_{\text {Th }}-10 j V_{\text {Th }}=-100(10+10 j)
$$

$$
j 10 V_{\text {Th }}-250 j-10 V_{\text {Th }}-10 j V_{\text {Th }}=-1000(1+j)
$$

$$
-10 V_{T h}=-1000-1000 j+250 j
$$

$$
-10 V_{\text {Th }}=-1000-750 j
$$

$$
V_{T h}=100+j 75
$$

$$
z_{L}=Z_{T h}^{*}=10+j 10
$$

$$
P_{\text {max }}=\frac{\left|V_{T h}\right|^{2}}{4 \operatorname{Re}\left\{Z_{T h}\right\}}=\frac{\left(\sqrt{100^{2}+75^{2}}\right)^{2}}{4 \times 10}=390.625 \mathrm{~W}
$$

18. (d)

```
    \(V=100\left(1-2 i_{x}\right)+400\left(1-2 i_{x}-0.01 V_{x}\right)+800 i_{x}\)
    \(i_{x}=1 \mathrm{~A}\) and \(V_{x}=V\)
    \(5 V=1300-1000=300\)
\(\therefore \quad V=60 \mathrm{~V}\)
and
    \(R_{\text {TH }}=60 \Omega\)
```

19. (b)

Given,

$$
\begin{aligned}
f_{0} & =5 \mathrm{kHz} \\
Z & =Z_{\text {source }}+Z_{\text {load }} \\
& =2+j 4+10-j X_{C} \\
& =\left[12+j\left(4-X_{C}\right)\right] \Omega
\end{aligned}
$$

at resonance, imaginary part of Z is zero.

$$
\begin{array}{ll}
\because & X_{L}=X_{C} \\
\therefore & X_{C}=\frac{1}{\omega_{0} C}=4 \\
\text { or } & C=7.95 \mu F
\end{array}
$$

As at resonance current is maximum and thus, maximum power transferred to R.
20. (c)

Condition for Transient free response is given by
here,

$$
\begin{aligned}
\omega t_{0} & =\tan ^{-1}\left(\frac{\omega L}{R}\right)-\theta+\frac{\pi}{2} \\
\omega & =\frac{1}{2}, \quad \theta=45^{\circ} \\
\frac{t_{0}}{2} & =\tan ^{-1}\left(\frac{\frac{1}{2} \times 2}{1}\right)-\frac{\pi}{4}+\frac{\pi}{2} \\
\frac{t_{0}}{2} & =\frac{\pi}{2} \\
t_{0} & =\pi=3.1416 \mathrm{sec}
\end{aligned}
$$

21. (a)

$$
\begin{aligned}
I_{1}(s) & =\frac{I(s)(1+s)}{\frac{1}{s}+2+1+s}=\frac{I(s)(s+1) s}{s^{2}+3 s+1} \\
V_{0}(s) & =2 I_{1}(s)=\frac{I(s) 2 s(s+1)}{s^{2}+3 s+1} \\
\frac{V_{0}(s)}{I(s)} & =\frac{2 s(s+1)}{s^{2}+3 s+1}
\end{aligned}
$$

22. (c)

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right] \Rightarrow \begin{aligned}
& V_{1}=2 I_{1}+I_{2} \\
& V_{2}=I_{1}+4 I_{2}
\end{aligned}
$$

Applying KVL
Loop I

$$
\begin{align*}
3\left(I_{1}+I_{3}\right)+V_{1} & =141 \\
3 I_{1}+3 I_{3}+2 I_{1}+I_{2} & =141 \\
5 I_{1}+I_{2}+3 I_{3} & =141 \tag{i}
\end{align*}
$$

Loop II

$$
\begin{align*}
V_{2} & =\left(I_{3}-I_{2}\right) \cdot 6 \\
V_{2} & =I_{1}+4 I_{2} \\
I_{1}+4 I_{2} & =6 I_{3}-6 I_{2} \\
I_{1}+10 I_{2}-6 I_{3} & =0 \tag{ii}
\end{align*}
$$

Loop III

$$
\begin{align*}
3\left(I_{1}+I_{3}\right)+3 I_{3}+6\left(I_{3}-I_{2}\right) & =141 \\
3 I_{1}-6 I_{2}+12 I_{3} & =141 \tag{iiii}
\end{align*}
$$

By equation (i), (ii) and (iii)
$I_{1}=24 \mathrm{~A}$
$I_{2}=1.5 \mathrm{~A}$
$I_{3}=6.5 \mathrm{~A}$
23. (b)

At $t=0^{-} S_{1}$ is closed. S_{2} is open

C_{1} gets charged upto 3 V charge stored in C_{1}

$$
Q_{0}=C_{1} V=1 \times 3=3 C
$$

Voltage across C_{2} is zero at $t=0^{-}$, so no charge stored in C_{2}.
At $t>0, S_{1}$ is open and S_{2} is closed.
charge stored $\left(Q_{0}\right)$ initially in C_{1} gets redistributed between C_{1} and C_{2}

Let \quad Charge stored in $C_{1}=Q_{1}$
Charge stored in $C_{2}=Q_{2}$

According to conservation of charge

$$
\begin{equation*}
Q_{1}+Q_{2}=Q_{0}=3 \tag{1}
\end{equation*}
$$

Voltage across $C_{1}=$ Voltage across C_{2}

$$
\begin{align*}
\frac{Q_{1}}{C_{1}}=\frac{Q_{2}}{C_{2}} & \Rightarrow \frac{Q_{1}}{1}=\frac{Q_{2}}{2} \\
Q_{2} & =2 Q_{1} \tag{2}
\end{align*}
$$

from (1) and (2)
and $\quad \begin{aligned} & Q_{1}=1 C \\ & Q_{2}=2 C\end{aligned}$
\therefore Voltage across the combination $=\frac{Q_{1}}{C_{1}}=\frac{1}{1}=1 \mathrm{~V}$
24. (d)

Applying KCL on supernode

$$
\frac{V_{1}}{1+j}-2+\frac{V_{2}}{1}+\frac{V_{2}}{1-j}=0
$$

and

$$
V_{1}+6=V_{2}
$$

$\therefore \quad\left[\begin{array}{cc}0.5-0.5 j & 1.5+0.5 j \\ 1 & -1\end{array}\right]\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]=\left[\begin{array}{c}2 \\ -6\end{array}\right]$

$$
\begin{array}{ll}
\therefore & V_{2}=\frac{\left[\begin{array}{cc}
0.5-0.5 j & 2 \\
1 & -6
\end{array}\right]}{\left[\begin{array}{cc}
0.5-0.5 j & j 0.5+0.5 j \\
1 & -1
\end{array}\right]} \\
V_{2}=\frac{5.83095 \angle 149.036}{2 \angle 180^{\circ}} \\
V_{2} \approx 2.915 \angle-30.96^{\circ} \\
\text { Thus, } & I_{0}=\frac{V_{2}}{1 \Omega}=2.915 \angle-30.96^{\circ}
\end{array}
$$

25. (b)

$$
\begin{aligned}
Z_{A B} & =\left(\frac{23}{6}\right)+[(3+j 4) \|(3-j 4)] \\
& =\frac{23}{6}+\frac{(3+j 4)(3-j 4)}{6}=\frac{23+25}{6}=\frac{48}{6} \Omega=8 \Omega \\
\therefore \quad Z_{A B} & =8 \Omega
\end{aligned}
$$

26. (c)

At $t=0$, switch is closed
For $t>0$, the circuit in s-domain becomes,

Applying KVL, we get,

$$
\begin{aligned}
\frac{5}{s}-\frac{2}{s}+2 & =\left(3+s+\frac{2}{s}\right) I(s) \\
I(s) & =\frac{2 s+3}{(s+1)(s+2)}
\end{aligned}
$$

Using partial fractions, $I(s)=\frac{1}{(s+1)}+\frac{1}{(s+2)}$
or

$$
i(t)=L^{-1}[I(s)]=\left(e^{-t}+e^{-2 t}\right) \mathrm{A} ; \text { for } t>0
$$

27. (d)

Given, $\quad f=1.5 \mathrm{MHz}$

$$
C=150 \mathrm{pF}
$$

$$
\mathrm{BW}=10 \mathrm{kHz}
$$

For series RLC circuit,

$$
\begin{aligned}
Q & =\frac{f_{o}}{\mathrm{BW}}=\frac{1.5 \times 10^{6}}{10 \times 10^{3}}=150 \\
Q & =\frac{1}{\omega R C} \\
\frac{1}{150} & =2 \pi \times 1.5 \times 10^{6} \times 150 \times 10^{-12} \times R \\
R & =\frac{10^{6}}{2 \pi \times 1.5 \times 150 \times 150}=4.71 \Omega
\end{aligned}
$$

28. (c)

For a capacitor

$$
\begin{aligned}
i(t) & =\frac{c d v(t)}{d t}=10 \times 10^{-6} \frac{d v(t)}{d t} \times 10^{3} \mathrm{~A} \\
& =10^{-2} \frac{d v(t)}{d t} \mathrm{~A}=10 \frac{d v(t)}{d t} \mathrm{~mA}
\end{aligned}
$$

29. (d)

Now, applying KCL at node A, we get,

$$
\begin{aligned}
I_{1} & =V_{1}+\left(V_{1}-V_{1}^{\prime}\right) \\
& =2 V_{1}-V_{1}^{\prime} \\
I_{1} & =2 V_{1}-\frac{1}{a} V_{2}
\end{aligned}
$$

For I_{2}, we can write

$$
I_{2}=-\frac{1}{a} I_{1}^{\prime}=-\frac{1}{a}\left[-V_{1}^{\prime}+\left(V_{1}-V_{1}^{\prime}\right)\right]
$$

$$
\begin{array}{rlrl}
& =-\frac{1}{a} V_{1}+\frac{2}{a^{2}} V_{2} \\
\therefore & {\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]} & =\left[\begin{array}{cc}
2 & -\frac{1}{a} \\
-\frac{1}{a} & \frac{2}{a^{2}}
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
\end{array}
$$

For the Z-parameter to not exist.

$$
\begin{array}{lll}
\therefore & |Y| & =0 \\
\therefore & |Y| & =\frac{4}{a^{2}}-\frac{1}{a^{2}}=\frac{3}{a^{2}} \\
\because & |Y| \neq 0
\end{array}
$$

Thus, no such value exist for which $|Y|=0$.
30. (a)

From phasor, we can write

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{X_{C}}{R_{2}} \\
\Rightarrow \quad R_{2} & =X_{C} \sqrt{3}=\frac{\sqrt{3}}{\omega C} \\
\Rightarrow \quad \tan 45^{\circ} & =\frac{X_{L}}{R_{1}} \\
R_{1} & =X_{L}=\omega L \\
R_{1} R_{2} & =\frac{\sqrt{3}}{\omega C} \times \omega L=\frac{L}{C} \sqrt{3} \\
R_{1} R_{2} & =\sqrt{3}=1.732
\end{aligned}
$$

we know

$$
\frac{R_{1}+R_{2}}{2} \geq \sqrt{R_{1} R_{2}}
$$

as arithmetic mean \geq geometric mean ; (for non-negative real numbers)

$$
\begin{aligned}
& R_{1}+R_{2} \geq 2 \sqrt{\sqrt{3}} \\
& R_{1}+R_{2} \geq 2(3)^{1 / 4}
\end{aligned}
$$

Minimum value of $R_{1}+R_{2}=2.63 \Omega$

