Mechanical Engineering

Thermodynamics

Comprehensive Theory with Solved Examples and Practice Questions

MADE EASY Publications

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016

E-mail: infomep@madeeasy.in

Contact: 011-45124660, 8860378007

Visit us at: www.madeeasypublications.org

Thermodynamics

© Copyright by MADE EASY Publications.

All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photo-copying, recording or otherwise), without the prior written permission of the above mentioned publisher of this book.

First Edition: 2015 Second Edition: 2016 Third Edition: 2017 Fourth Edition: 2018 Fifth Edition: 2019 **Sixth Edition: 2020**

© All rights reserved by MADE EASY PUBLICATIONS. No part of this book may be reproduced or utilized in any form without the written permission from the publisher.

Contents

Thermodynamics

Chapter 1 Basic Concepts & Zeroth Law of		Chapter 4 Open System Analysis by First Law 68		
1.1	Introduction1	4.2	Steady Flow Systems	68
1.2	System, Surroundings and Properties1	4.3	Mass Balance and Energy Balance for	
1.3	State of the System & Process3		Steady Flow Systems	69
1.4	Pure Substances4	4.4	SFEE Applied to Various Devices	7
1.5	Zeroth Law of Thermodynamics5	4.5	Comparison of SFEE with Euler and	
	Objective Brain Teasers9		Bernoulli's Equation	8
	Student Assignments10	4.6	Unsteady Flow Process	84
	stadent risignments illimination illiminatio		Objective Brain Teasers	104
Chapt	ter 2		Student Assignments	108
	y and Energy Interactions11			
2.1	Introduction11	Chapt	er 5	
	Work	Second	l Law of Thermodynamics	109
2.2		5.1	Introduction	109
2.3	Closed System Analysis13	5.2	Thermal Energy Reservoir	110
2.4	Ideal Gas22	5.3	Heat Engine	110
2.5	Heat25	5.4	Kelvin - Planck Statement of Second Law.	112
	Objective Brain Teasers30	5.5	Refrigerators and Heat Pumps	113
	Student Assignments33	5.6	Clausius Statement of the Second Law	116
	Student / 153/g/ments	5.7	Equivalence of Kelvin-Planck and	
Chapter 2			Clausius Statement	116
Chapter 3		5.8	Reversible and Irreversible Processes	113
	aw of Thermodynamics35	5.9	The Carnot Cycle	122
3.1	Introduction35	5.10	The Carnot Principles	124
3.2	First Law of Thermodynamics35	5.11	The Thermodynamic Temperature Scale	12
3.3	Enthalpy40	5.12	Maximum Performance Measures for Cyc	
3.4	Heat-Transfer in Various Processes40		Operating between Two Reservoirs Oper	
3.5	Free Expansion54		between two Reservoirs	_
	Objective Brain Teasers62		Objective Brain Teasers	
	Student Assignments67		Student Assignments	

Chapter 6

Entrop	y152
6.2	Clausius Inequality152
6.3	The Property of Entropy 155
6.4	Principle of Entropy Increase157
6.5	Temperature-Entropy Diagram159
6.6	The T-dS Relations:162
6.7	Entropy change for an Ideal Gas164
6.8	Entropy Change of An Incompressible
	Substance172
6.9	Finite Body Analysis173
6.10	Reversible Steady-Flow Work179
6.11	Second Law Analysis of a Control Volume 183
6.12	Available Energy190
6.13	Available Energy Referred to a Cycle191
6.14	Heat Transfer Through a Finite Temperature
	Difference192
6.15	Availability and Availability function 196
6.16	Irreversibility198
6.17	Second Law Efficiency199
	Objective Brain Teasers217
	Student Assignments223

Chapter 7

Prop	erties of Pure Substances225
7.	Introduction225
7.	Phase Change of a Pure Substance225
7.	Property Diagrams227
7.	Quality and Saturated Liquid Vapour
	Mixture229
7.	Enthalpy and Entropy of Pure Substances 232
7.	Steam Tables233
7.	Reference State and Reference Values 238
	Objective Brain Teasers248
	Student Assignments251
Cha	oter 8
Ther	modynamic Relations253
8.	Mathematical Theorems253
8.	The Maxwell Relations254
8.	Tds Partial Differential Equations255
8.	Specific Heats cp and cv256
8.	Energy Equations261
8.	
	The Joule-Thomson Coefficient 264
8.	
8. 8.	Clausius - Clapeyron Equation 267
-	Clausius - Clapeyron Equation
8.	Clausius - Clapeyron Equation

Thermodynamic Relations

8.1 Mathematical Theorems

Let three variables are represented by x, y and z. Their functional relationship may be expressed in the forms:

$$f(x, y, z) = 0$$

$$x = x(y, z)$$

$$y = y(x, z)$$

$$z = z(x, y)$$

Let x is a function of two independent variables y and z i.e.

$$x = x (y, z)$$

Then the differential of the dependent variable x is given by

$$dx = \left(\frac{\partial x}{\partial y}\right)_{Z} dy + \left(\frac{\partial x}{\partial z}\right)_{V} dz$$

Where dx is called the exact differential

$$\left(\frac{\partial x}{\partial y}\right)_Z = M \text{ and } \left(\frac{\partial x}{\partial z}\right)_Y = N$$

$$dx = Mdy + Ndz$$

Partial differential of M and N with respect to z and y, respectively gives

$$\frac{\partial M}{\partial z} = \frac{\partial^2 x}{\partial y \partial z}$$

and

$$\frac{\partial \mathcal{N}}{\partial y} = \frac{\partial^2 x}{\partial z \partial y}$$

$$\left(\frac{\partial M}{\partial Z}\right)_V = \left(\frac{\partial N}{\partial y}\right)_Z$$

This is the condition of exact or perfect differential

$$y = y(x, z)$$
 and $z = z(x, y)$

then from these two relations we have

$$dy = \left(\frac{\partial y}{\partial x}\right)_{z} dx + \left(\frac{\partial y}{\partial z}\right)_{x} dz$$

and

$$dZ = \left(\frac{\partial Z}{\partial x}\right)_{V} dx + \left(\frac{\partial Z}{\partial y}\right)_{x} dy$$

or it can be written for dy as

$$dy = \left(\frac{\partial y}{\partial x}\right)_{z} dx + \left(\frac{\partial y}{\partial z}\right)_{x} \left[\left(\frac{\partial z}{\partial x}\right)_{y} dx + \left(\frac{\partial z}{\partial y}\right)_{x} dy\right]$$

$$= \left[\left(\frac{\partial y}{\partial x}\right)_{z} + \left(\frac{\partial y}{\partial z}\right)_{x} \left(\frac{\partial z}{\partial x}\right)_{y}\right] dx + \left(\frac{\partial y}{\partial z}\right)_{x} \left(\frac{\partial z}{\partial y}\right)_{x} dy$$

$$= \left[\left(\frac{\partial y}{\partial x}\right)_{z} + \left(\frac{\partial y}{\partial z}\right)_{x} \left(\frac{\partial z}{\partial x}\right)_{y}\right] dx + dy$$

So we can conclude that the coefficient of dx should be zero in order to have above equation true

$$\frac{\partial y}{\partial x} \Big|_{z} + \left(\frac{\partial y}{\partial z}\right)_{x} \left(\frac{\partial z}{\partial x}\right)_{y} = 0$$

$$\left(\frac{\partial y}{\partial z}\right)_{x} \left(\frac{\partial z}{\partial x}\right)_{y} = -\left(\frac{\partial y}{\partial x}\right)_{z}$$

$$\left(\frac{\partial x}{\partial y}\right)_{z} \left(\frac{\partial y}{\partial z}\right)_{x} \left(\frac{\partial z}{\partial x}\right)_{y} = -1$$

In terms P, v and T, the following relation holds good

$$\left(\frac{\partial P}{\partial v}\right)_{T} \left(\frac{\partial T}{\partial P}\right)_{V} \left(\frac{\partial v}{\partial T}\right)_{P} = -1$$

Chain rule: If f is a function of x, y and z then

$$\left(\frac{\partial x}{\partial y}\right)_f \left(\frac{\partial y}{\partial z}\right)_f \left(\frac{\partial z}{\partial x}\right)_f = 1$$

8.2 The Maxwell Relations

The equations that relate the partial derivatives of properties *P*, *v*, *T* and *s* of a simple compressible system to each other are called the Maxwell relations. They are obtained from the four Gibbs equations by exploiting the exactness of the differential of thermodynamic properties.

Two of the gibbs relations we have already seen

$$du = Tds - Pdv$$
 ... (i)

and dh = Tds + vdP

The other two Gibbs relations are based on two new combination properties the Helmholtz function f and the gibbs function g, defined as

$$f = u - Ts$$

and g = h - Ts

- For any natural process the value of Gibbs function and Helmholtz function decreases and attains a minimum value.
- The rate of chemical reactions and their degree of completion is determined using the second law of thermodynamics

Differentiating the two new functions, we get

$$df = du - Tds - sdT$$

$$dg = dh - Tds - sdT$$

the above relations are simplified with the help of first two Gibbs relations, to obtain the other two Gibbs relations for simple compressible systems as

$$df = -sdT - Pdv \qquad ... (iii)$$

$$dg = -sdT + vdP \qquad ... (iv)$$

A careful examination of the four gibbs relations [(i) to (iv)] reveals that they are of the form

$$dx = Mdy + Ndz$$

with

$$\left(\frac{\partial M}{\partial z}\right)_{V} = \left(\frac{\partial N}{\partial y}\right)_{Z} \qquad \dots (V)$$

Since u, h, f and g are properties and thus have exact differentials. Applying equation (v) to each of them, we obtain

$$\left(\frac{\partial T}{\partial v}\right)_{s} = -\left(\frac{\partial P}{\partial s}\right)_{s}$$

$$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$$

$$\left(\frac{\partial s}{\partial v}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{v}$$

$$\left(\frac{\partial s}{\partial P}\right)_{T} = -\left(\frac{\partial v}{\partial T}\right)_{P}$$

The above four relations are called the Maxwell relations. They are extremely valuable in thermodynamics because they provide a means of determining the change in entropy, which cannot be measured directly, by simply measuring the changes in properties P, v and T.

Tds Partial Differential Equations 8.3

Since entropy may be expressed as a function of any other two properties, e.g. Temperature T and specific volume v,

Hence writing

$$s = f(T, v)$$

i.e.

$$ds = \left(\frac{\partial s}{\partial T}\right)_{V} dT + \left(\frac{\partial s}{\partial V}\right)_{T} dV$$

or

$$Tds = T\left(\frac{\partial s}{\partial T}\right)_{V} dT + T\left(\frac{\partial s}{\partial V}\right)_{T} dV \qquad \dots (i)$$

But for a reversible constant volume change

$$dq = c_{y}(dT)_{y} = T(ds)_{y}$$

or

$$C_V = T \left(\frac{\partial s}{\partial T} \right)_V$$

But,

$$\left(\frac{\partial s}{\partial v}\right)_{T} = \left(\frac{\partial P}{\partial T}\right)_{V}$$

(From Maxwell equations)

Hence, substituting in equation (i), we get

$$Tds = c_v dT + T \left(\frac{\partial P}{\partial T}\right)_v dv$$

This is known as the first form of entropy equation, or the First Tds equation.

Similarly writing,

$$s = f(T, P)$$

i.e.

$$ds = \left(\frac{\partial s}{\partial T}\right)_{P} dT + \left(\frac{\partial s}{\partial P}\right)_{T} dP$$

or

$$Tds = T\left(\frac{\partial s}{\partial T}\right)_{P} dT + T\left(\frac{\partial s}{\partial P}\right)_{T} dP \qquad \dots (ii)$$

But for a reversible constant pressure change

$$dq = c_p(dT)_p = T(ds)_p$$

or

$$c_p = T \left(\frac{\partial s}{\partial T} \right)_P$$

Also,

$$\left(\frac{\partial s}{\partial P}\right)_T = -\left(\frac{\partial v}{\partial T}\right)_P$$

(From Maxwell relations)

Substituting in equation (ii), we get,

$$Tds = c_p dT - T \left(\frac{\partial V}{\partial T} \right)_P dP$$

This is known as the second form of entropy equation or the **Second** *Tds* **equation**

8.4 Specific Heats c_p and c_p

Equating the first and second Tds equations, we get

$$Tds = c_p dT - T \left(\frac{\partial V}{\partial T} \right)_P dP = c_v dT + T \left(\frac{\partial P}{\partial T} \right)_V dV$$

$$(c_p - c_v)dT = T\left(\frac{\partial P}{\partial T}\right)_v dv + T\left(\frac{\partial v}{\partial T}\right)_P dP$$

Thermodynamics

$$dT = \frac{T}{c_P - c_V} \left[\left(\frac{\partial P}{\partial T} \right)_V dV + \left(\frac{\partial V}{\partial T} \right)_P dP \right] \qquad \dots (i)$$

Now temperature may be expressed as a function of any other two properties

so let

$$T = f(P, v)$$

::

$$dT = \left(\frac{\partial T}{\partial P}\right)_{V} dP + \left(\frac{\partial T}{\partial V}\right)_{P} dV \qquad \dots (ii)$$

Comparing equations (i) and (ii), we get

$$\frac{T}{C_p - C_v} \left(\frac{\partial V}{\partial T} \right)_P = \left(\frac{\partial T}{\partial P} \right)_V \text{ and } \frac{T}{C_p - C_v} \left(\frac{\partial P}{\partial T} \right)_V = \left(\frac{\partial T}{\partial V} \right)_P$$

Both there equation give

$$c_p - c_v = T \left(\frac{\partial P}{\partial T} \right)_V \left(\frac{\partial V}{\partial T} \right)_P$$

But,

$$\left(\frac{\partial T}{\partial P}\right)_{V} \cdot \left(\frac{\partial P}{\partial V}\right)_{T} \left(\frac{\partial V}{\partial T}\right)_{P} = -1$$
 (as $T = f(P, V)$)

∴ We get,

$$c_p - c_v = -T \left(\frac{\partial P}{\partial v} \right)_T \left[\left(\frac{\partial v}{\partial T} \right)_P \right]^2$$

This relation can be expressed in terms of two other thermodynamic properties called the volume expansivity (β) and isothermal compressibility (K_T), which are defined as

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P}$$

and

$$K_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$$

Substituting these two relations, we obtain another relation for $c_p - c_v$ as:

$$c_p - c_v = \frac{T v \beta^2}{K_T}$$

It is called **Mayer's relation**.

Conclusions which can be drawn from the above equation are:

(i) The isothermal compressibility K_T is a positive quantity for all substances in all phases. The volume expansivity β could be negative for some substance (such as liquid water below 4°C), but its square is always positive or zero. The temperature T in this relation is thermodynamic temperature which is also positive. Therefore we conclude that the constant pressure specific heat is always greater than or equal to the constant volume specific heat i.e.

$$C_D \geq C_V$$

- (ii) The difference between c_p and c_v approaches zero as the absolute temperature approaches zero.
- (iii) The difference between the two specific heats is very small and is usually disregarded for substances that are nearly incompressible, such as liquids and solids.

Example 8.1 Show that $c_p - c_v = R$ for an ideal gas

Solution:

We know for any gas

$$c_p - c_v = -T \left(\frac{\partial P}{\partial v} \right)_T \left[\left(\frac{\partial v}{\partial T} \right)_P \right]^2$$

The ideal gas equation of state gives us

$$Pv = RT \text{ or } P = \frac{RT}{v}$$

$$\therefore \qquad \left(\frac{\partial P}{\partial V}\right)_{T} = \frac{-RT}{V^{2}} = \frac{-P}{V}$$

and also,
$$v = \frac{RT}{P}$$

$$\therefore \qquad \left(\frac{\partial v}{\partial T}\right)_{P} = \frac{R}{P}$$

Substituting,
$$c_p - c_V = -T \left(\frac{-P}{V}\right) \times \left(\frac{R}{P}\right)^2 = \frac{T}{PV} \times R^2 = \frac{1}{R} \times R^2 \qquad \text{(as } PV = RT)$$

$$\therefore \qquad c_{o} - c_{V} = R$$

Hence proved

Example 8.2 For a perfect gas, shown that

$$c_p - c_v = \left[P + \left(\frac{\partial u}{\partial v} \right)_T \right] \left(\frac{\partial v}{\partial T} \right)_P = P v \beta + v \beta \left(\frac{\partial u}{\partial v} \right)_T$$

where β is the coefficient of cubical/volume expansion.

Solution:

The first law of thermodynamics applied to a closed system undergoing a reversible process states as follows:

$$\delta Q = du + Pdv$$

and as per second law

$$ds = \left(\frac{\delta Q}{T}\right)_{\text{rev}}$$

Combining above two equation we have

$$Tds = du + Pdv$$

also we know.
$$h = u + Pv$$

$$\therefore \qquad \qquad dh = du + Pdv + vdP$$

• The change of temperature of a fluid during a throttling process is described by the Joule-Thomson coefficient defined as $\mu = \left(\frac{\partial T}{\partial P}\right)_h$

and also

$$\mu = \frac{1}{c_p} \left[T \left(\frac{\partial v}{\partial T} \right)_P - v \right]$$
 for any substance

• The Clapeyron equation enables us to determine the enthalpy change associated with a phase change from a knowledge of *P*, *v* and *T* data alone. It is expressed as

$$\left(\frac{dP}{dT}\right)_{\text{sat}} = \frac{h_{fg}}{T_{\text{sat}}v_{fg}}$$

It can be further expressed as Clausius Clapeyron equation as

$$\left(\frac{dP}{dT}\right)_{\text{sat}} = \frac{(h_{fg})P_{\text{sat}}}{R(T_{\text{sat}})^2}$$
 (Assuming $v_g >> v_f$)

• The deviation from ideal gas behaviour can be properly accounted for by using the compressibility factor Z, defined as

$$Z = \frac{v_{\text{actual}}}{v_{\text{ideal}}} = \frac{Pv_a}{RT}$$

The Z factor is approximately the same for all gases at the same reduced temperature and reduced pressure, which are defined as

$$T_r = \frac{T}{T_C}$$
 and $P_r = \frac{P}{P_C}$

Where T_C and P_C are critical temperature and pressure respectively.

 The approximate behaviour of real gases was taken into consideration by Van der Waal in his equation of state for a gas given as

$$\left(P + \frac{a}{v^2}\right)(v - b) = RT$$

Where

$$a = \frac{27R^2T_C^2}{64P_C} \text{ and } b = \frac{RT_C}{8P_C}$$

Objective Brain Teasers

- Q.1 For a given volume of dry saturated steam, Clapeyron's equation is given by
 - (a) $v_g v_f = \frac{dT_s}{dP} \times \frac{T_s}{h_g h_f}$
 - (b) $V_g V_f = \frac{dT_S}{dP} \times \frac{h_g h_f}{T_S}$

- (c) $v_g v_f = \frac{dP}{dT_S} \times \frac{h_g h_f}{T_S}$
- (d) $v_g v_f = \frac{dP}{dT_s} \times \frac{T_s}{h_a h_f}$
- Q.2 To get the cooling effect for a refrigerant, it has to be precooled at least below the

STUDENT'S ASSIGNMENTS

Q.1 Using Maxwell's relations, show that for a pure substance

$$Tds = c_p dT - Tv \beta dP$$
$$= c_v dT + \frac{T\beta}{K} dV$$
$$= \frac{Kc_v dP}{\beta} + \frac{c_P}{\beta V} dV$$

where β is the coefficient of cubical expansion, K is the coefficient of isothermal compressibility and c_p , c_v are specific heats at constant pressure and constant volume respectively.

Q.2 Derive expressions for Δu , Δh and Δs for a gas that obeys the Van der Waal's equation of state for an isothermal process.

- Q.3 For a substance with volume expansivity, $\beta > 0$, show that at every point of a single phase region (vapour region) on a Mollier diagram, the slope of constant pressure line is greater than the slope of constant temperature line but less than that of constant volume line.
- Q.4 Show that for a Van der Waal's gas

(a)
$$\left(\frac{\partial c_v}{\partial v}\right)_T = 0$$

(b)
$$(s_2 - s_1)_T = R \ln \left(\frac{v_2 - b}{v_1 - b} \right)$$

(c) $T(v-b)^{R/c_v}$ = Constant for an isentropic process

(d)
$$c_p - c_v = \frac{R}{1 - \frac{2a(v - b)^2}{RTv^3}}$$

(e)
$$(h_2 - h_1)_T = (P_2 v_2 - P_1 v_1) + a \left(\frac{1}{v_1} - \frac{1}{v_2}\right)$$

