

Detailed Schedule

COMPUTER

SCIENCE & IT

Topicwise Tests								
Test No.	Test Syllabus	No. of Ques.	Marks	Time	Activation Date			
1	Theory of Computation-1: Regular expressions and finite automata, Context-free grammars and push-down automata	17	25	45 min				
2	Theory of Computation-2: Regular and context-free languages, Grammar, pumping lemma, Turing machines and undecidability.	17	25	45 min				
3	Algorithms -1: Sorting, Asymptotic worst case time and space complexity. Algorithm design techniques: divide-and-conquer and Searching.	17	25	45 min				
4	Algorithms-2: Binary heaps and graphs, Graph search, Greedy techniques, minimum spanning trees, shortest paths & dynamic programming.	17	25	45 min	20-04-202			
5	Computer Organization and Architecture-1: Instruction pipelining, Machine instructions and addressing modes and control unit.	17	25	45 min				
6	Computer Organization and Architecture-2: ALU, data-path, Memory hierarchy: cache, main memory, secondary storage and I/O interface (interrupt and DMA mode).	17	25	45 min				
7	Databases-1: Er-model. Relational model: relational algebra normalization and indexing (e.g., B and B+ trees).	17	25	45 min				
8	Databases-2: Tuple calculus, SQL, Integrity constraints, File organization, Transactions and concurrency control.	17	25	45 min				
9	Engineering Mathematics-1: Matrices, system of linear equations, eigenvalues and eigenvectors, Random variables. Uniform, normal, exponential, poisson and binomial distributions. Mean, median, mode and standard deviation.	17	25	45 min				
10	Engineering Mathematics-2: Limits, continuity and differentiability. Maxima and minima. Mean value theorem. Integration, determinants and LU decomposition, Conditional probability and Bayes theorem.	17	25	45 min	30-04-202			
11	General Aptitude-1: Numerical Ability: Numerical computation, numerical estimation, numerical reasoning and data interpretation.	17	25	45 min				
12	General Aptitude-2: Verbal Ability: English grammar, sentence completion, verbal analogies, word groups, instructions, critical reasoning and verbal deduction.	17	25	45 min				
13	Operating System-1: Memory management, virtual memory and Deadlock and File systems.	17	25	45 min				
14	Operating System-2: Processes, threads, inter-process communication, concurrency, synchronization and CPU scheduling.	17	25	45 min				
15	Programming and Data Structures-1: Programming in C, Arrays, stacks and queues, Recursion.	17	25	45 min	10-05-202			
16	Programming and Data Structures-2: Hashing, Linked lists, trees, binary search trees.	17	25	45 min	10-03-202			
17	Computer Networks-1: Concept of layering, LAN technologies and Ethernet bridging along with MAC protocols, Flow and error control techniques, switching, application layer protocols (DNS, SMTP, POP, FTP, HTTP, Email).	17	25	45 min				
18	Computer Networks-2: IPv4, routers and routing algorithms (distance vector, link state). TCP/UDP and sockets, congestion control, network layer protocol headers like ARP, DHCP, ICMP.	17	25	45 min				
19	Digital Logic-1: Boolean algebra, Combinational and Minimization	17	25	45 min				
20	Digital Logic-2: Sequential circuits, Number representations and computer arithmetic (fixed and floating point).	17	25	45 min				
21	Discrete Mathematics-1: Propositional and first order logic. Sets, relations, functions and counting	17	25	45 min	20-05-202			
22	Discrete Mathematics-2: Partial orders and lattices, groups, Graphs: connectivity, matching, coloring. Recurrence relations and generating functions.	17	25	45 min				
23	Compiler Design-1: Lexical analysis, syntax-directed translation and Intermediate code generation.	17	25	45 min				
24	Compiler Design-2: Parsing, Runtime environments, local optimization. Data flow analysis: constant propagation, liveness analysis, common sub-expression elimination	17	25	45 min				

Detailed Schedule

COMPUTER
SCIENCE & IT

	Single Subject Tests						
Test No.	Test Syllabus	No. of Ques.	Marks	Duration	Activation Date		
25	Theory of Computation	33	50	90 min			
26	Algorithms	33	50	90 min	15-6-2025		
27	Computer Organization and Architecture	33	50	90 min			
28	Operating System	33	50	90 min			
29	Engineering Mathematics	33	50	90 min			
30	General Aptitude	33	50	90 min			
31	Database	33	50	90 min	15-07-2025		
32	Programming and Data Structures	33	50	90 min			
33	Computer Networks	33	50	90 min			
34	Digital Logic	33	50	90 min			
35	Compiler Design	33	50	90 min			
36	Discrete Mathematics	33	50	90 min			
	Full Syllabus Tests						
37	Full Syllabus Test-1 (Basic Level)	65	100	180 min	15-08-2025		
38	Full Syllabus Test-2 (Basic Level)	65	100	180 min			
39	Full Syllabus Test-3 (Basic Level)	65	100	180 min			
40	Full Syllabus Test-4 (Basic Level)	65	100	180 min			
41	Full Syllabus Test-5 (Advance Level)	65	100	180 min	15-09-2025		
42	Full Syllabus Test-6 (Advance Level)	65	100	180 min			
43	Full Syllabus Test-7 (Advance Level)	65	100	180 min			
44	Full Syllabus Test-8 (Advance Level)	65	100	180 min			
	Candidate has to upload GATE-2026 Admit Card to a	ccess belo	ow menti	oned tests	5		
45	GATE Mock Test 1	65	100	180 min	15-10-2025		
46	GATE Mock Test 2	65	100	180 min			
47	GATE Mock Test 3	65	100	180 min			
48	GATE Mock Test 4	65	100	180 min			