Civil Engineering

Environmental Engg: Vol-I

(Water Supply Engineering)

Comprehensive Theory with Solved Examples and Practice Questions

MADE EASY Publications Pvt. Ltd.

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016

E-mail: infomep@madeeasy.in Contact: 011-45124660, 8860378007 Visit us at: www.madeeasypublications.org

Environmental Engineering: Vol-I (Water Supply Engineering)

© Copyright by MADE EASY Publications Pvt. Ltd.

All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photo-copying, recording or otherwise), without the prior written permission of the above mentioned publisher of this book.

First Edition: 2015
Second Edition: 2016
Third Edition: 2017
Fourth Edition: 2018
Firth Edition: 2019
Sixth Edition: 2020
Seventh Edition: 2021
Eighth Edition: 2022

© All rights reserved by MADE EASY PUBLICATIONS Pvt. Ltd. No part of this book may be reproduced or utilized in any form without the written permission from the publisher.

Contents

Environmental Engg: Vol-I(Water Supply Engineering)

Chapter 1

Water Demand 1 Water Demand1 1.2.1 Domestic Water Demand......2 1.2.2 Industrial Water Demand......2 1.2.3 Institutional and Commercial Water demand 3 1.2.4 Demand for Public Uses3 1.2.6 Water Required to Compensate Losses in Thefts and Wastes5 1.3 Factors Affecting Per Capita Demand......5 1.3.1 Size of the City5 1.3.3 Types of Gentry and Habits of People......6 1.3.4 Industrial and Commercial Activities......6 1.3.5 Quality of Water Supplies......6 1.3.6 Pressure in the Distribution Systems......6 1.3.7 Development of Sewerage Facilities6 1.3.8 System of Supply6 1.3.9 Cost of Water 6 1.3.10 Policy of Metering and Method of Charging 6 1.4 Coincident Draft8 Design Period of Water Supply Unit......9 Population Forecasting......9 1.7 Population Forecasting Methods......11 1.7.1 Arithmetic Increase Method......11 1.7.2 Geometric Increase Method12 1.7.3 Incremental Increase Method13 1.7.4 Decreasing Growth Rate Method15 1.7.5 Graphical Projection or Extension Method16 1.7.6 Comparative Graphical Method......17 1.7.7 Master Plan or Zoning Method......18 1.7.8 Ratio Method or Apportionment Method......18 1.7.9 The Logistic Curve Method18 Objective Brain Teasers22

Chapter 2

So	urces of Water and its Conveyance	.26
2.1	Sources of Water	26
2.2	Yield of an Open Well	30
2.3	Yield of Wells	33
2.4	Tube Wells	35
	2.4.1 Strainer Type	35
	2.4.2 Gravel Pack Tubewell	36
	2.4.3 Cavity Type Tubewell	37
2.5	Collection of Surface Water	37
	2.5.1 Factors Governing the Location of an Intake	38
	2.5.2 Components of Intake	38
2.6	Conduits for Water Supply	38
2.7	Calculation of Head loss caused by Pipe Friction	39
2.8	Forces Acting on Pressure Conduits	42
2.9	Types of Pipes	46
2.10	Joints in Water Supply Piping	50
2.11	Corrosion in Pipes (Metals)	52
2.12	Pipe Appurtenances	54
2.13	Testing of the Pipe Lines	59
2.14	Economical Diameter of the Pumping Mains	60
	Objective Brain Teasers	66

Chapter 3

Objective Brain Teasers 101

Chapter 4

Tre	atm	ent of Water112
4.1	Natur	re of Impurities in Water112
4.2	Types	of Treatment 113
4.3	Pre-Ti	reatment118
4.4	Sedin	nentation123
	4.4.1	Classification of Sedimentation 124
	4.4.2	Theory of Sedimentation124
	4.4.3	Type of Sedimentation Tanks 130
	4.4.4	Tube Settlers137
	4.4.5	Common Design Criteria for
		Sedimentation Tank137
	4.4.6	Sludge Removal from Sedimentation Tank 138
	4.4.7	Circular Sedimentation Tank138
	4.4.8	Multi-storey Tank140
	4.4.9	Upward-flow Basin140
	4.4.10	Decrease in Efficiency of Sedimentation Tank141
4.5	Sedin	nentation with Coagulation141
4.6	Mech	anism of Coagulation143
4.7	Mixin	g Device150
	4.7.1	Flash Mixture 151
4.8	Filtrat	tion159
	4.8.1	Slow Sand Filter 162
	4.8.2	Rapid Gravity Filter 165
	4.8.2.	1 Operation
	4.8.2	Comparison of Performance of
		Slow Sand and Rapid Sand Filters175
	4.8.3	Pressure Filters 176
4.9	Disinf	fection177
4.10	Wate	r Hardness and Softening187
	4.10.1	Removal of Temporary Hardness187
	4.10.2	Removal of Permanent Hardness
		(Water Softening) 188
4.11	Mino	r Treatments193
	Ohiec	tive Brain Teasers 207

Chapter 5

Dis	trib	ution System	.228
5.1	Methods of Distribution		
	5.1.1	Gravitational System	228
	5.1.2	Direct Pumping	228
	5.1.3	Combined System	229
5.2	Syste	ms of Supply	229
	5.2.1	Continuous Supply	229
	5.2.2	Intermittent supply	229
5.3	Layou	uts of Distribution System	229
	5.3.1	Dead End System	229
	5.3.2	Grid System	230
	5.3.3	Ring System	230
	5.3.4	Radial System	230
5.4	Guide	elines For Design of a Distribution System	231
5.5	Press	ure in the Distribution System	232
5.6	Detec	ction of Leakage in Distribution System	232
	5.6.1	By Using Sounding Rods	232
	5.6.2	By Plotting the Hydraulic Gradient Line	232
	5.6.3	By Using Waste Detection Meters	232
5.7	Analy	sis of Network of Pipes	233
	5.7.1	Equivalent Pipe Method	233
	5.7.2	Hardy Cross Method	233
5.8	Appu	rtenances in Plumbing System	236
	5.8.1	Ferrules	236
	5.8.2	Goose Neck	236
	5.8.3	Service Pipe	236
	5.8.4	Stop Cock	236
	5.8.5	Water Meter	237
5.9	Wate	r Supply System Plumbing	237
5.10	Servi	ce Connection	238
5.11	Jointi	ing	239
5.12	Sewe	r Materials	240
5.13	Wate	r Storage for Buildings	246
5.14	Desig	gn of Balancing Reservoir/	
	Distri	bution Reservoir/Service Reservoir	246
	Ohier	tive Rrain Teasers	254

Water Demand

INTRODUCTION

In this chapter, we are going to understand the duty of an engineer in designing a water supply scheme for a particular section of the community, which becomes imperative upon him.

- First of all, we will evaluate the amount of water available and the amount of water demanded by the public.
- In fact, the first study is to consider the demand and then the second requirement is to find sources to fulfill that demand. Many a times, a compromise is sought between the two.
- To design a water supply, we must first estimate the population for which the scheme should be designed. The scheme once installed, must cater for the demand of the projected population upto some predetermined future date.

1.1 Water Demand

Estimation of demand for water is the key parameter in planning a water supply scheme. The agriculture sector consumes more than 80 percent of total water potential created in our country. The remaining portion is utilized to meet domestic, industrial and other demands.

The improvement in life-style and associated industrial development of a nation push up the per capita demand for water.

1.2 Various Types of Water Demand

- The prediction of precise quantity of water demanded by the public is very difficult, because there are so many variable factors affecting water consumption.
- There are some certain thumb rules and empirical formulas, which are used to assess this quantity, which may give fairly accurate results.

There are different types of water demands:

1.2.1 Domestic Water Demand

Domestic water demand includes the water required in private building for drinking, cooking, bathing, gardening purposes etc. which may vary according to the living conditions of the consumers.

- The total domestic water consumption is near about 50 to 60% of the total water consumptions.
- The IS code caps a limit on domestic water consumption between 135 to 225 lpcd.
- As per IS code, the minimum domestic water demand under ordinary conditions for a town with full
 flushing system should be taken as 200 /pcd although it can be minimized upto 135 /pcd for
 economically weaker section and LIG colonies (low income group) depending upon prevailing
 conditions.

In developed and an efficient country like USA, this figure usually goes as high as 340 *Ipcd*. This is because more water is consumed in rich living, in air-conditioning, air-cooling, bathing in bath tube, dish washing of utensils, car washing, home laundries, garbage grinders, etc.

1.2.2 Industrial Water Demand

The industrial water demand expresses the water required for industries which are either existing or are likely to be started in future, in the city for which water supply is being planned.

- This water requirement will thus vary with the types and number of industries present in the city.
- In industrial cities, the per capita requirement may finally be computed to be as high as 450 *l*/h/d as compared to the normal industrial requirement of 50 *l*/h/d.

Tab	Table 1.1 Water Requirements for Commercial Buildings (as per IS code)					
S.No.	Type of building	Average consumption in (/pcd)				
1.	Factories					
	(a) Where bathrooms are required to be provided	45				
	(b) Where no bathrooms are required	30				
2.	Hospitals (Including laundry, per bed)					
	(a) Number of beds less than 100	340				
	(b) Number of beds exceeding 100	450				
3.	Nurses homes and medical quarters	150				
4.	Hostels	135				
5.	Hotels (per bed)	180				
6.	Restaurants (per seat)	70				
7.	Offices	45				
8.	Cinemas, auditoriums and theatres (per seat)	15				
9.	Schools					
	(a) Day scholars	45				
	(b) Residentials	135				

Table 1.2 Water Required by Certain Important Industries					
Name of Industry	Unit of Production	Approximate Quantity of Water required per unit of production/raw material in kilo litres			
1. Automobiles	Vehicle	40			
2. Fertilizers	Tonne	80 - 200			
3. Leather	Tonne (or 1000 kg)	40 (or 4)			
4. Paper	Tonne	200 - 400			
5. Petroleum Refinery	Tonne (Crude)	1 - 2			
6. Sugar	Tonne (Crushed cane)	1 - 2			
7. Textile	Tonne (goods)	80 - 140			
8. Distillery (Alcohol)	kilo litre	122 - 170			

1.2.3 **Institutional and Commercial Water demand**

On an average, a per capita demand of 20 Id is usually considered to be enough to meet of such commercial and institutional water requirements although of course, this demand may be as high as 50 I/d for highly commercial cities.

The individual requirements would be as follows:

1. Schools/Colleges: 45 to 135 *l*pcd 2. Offices: 45 lpcd

3. Restaurants: 70 lpcd 4. Cinema and theatres: 15 lpcd

5. Hotels: 180 lpcd

6. Hospitals: 340 /pcd (when beds is less than 100), and 450 /pcd (when beds exceed 100)

7. Airports: 70 lpcd

8. Railway: 70 *Ipcd* (for junction with bathing facility)

1.2.4 **Demand for Public Uses**

This includes water requirement for parks, gardening, washing of roads etc. A nominal amount, not exceeding 5% of the total consumption may be provided to meet this demand.

A figure of 10 Ipcd is usually added on this account while computing total water requirements.

1.2.5 **Fire Demand**

The quantity of water required for extinguishing fire is not very large. For a total amount of water consumption for a city of 50 lakhs population, it hardly amounts to 1 Ipcd of fire demand, but this water should be easily available and kept always stored in storage reservoirs, as quantity of water required is in very less duration.

In thickly populated and industrial areas, fire generally breakout and may lead to serious damages, if not controlled effectively. Big cities, therefore, generally maintain full fire fighting squads. Fire fighting personnel require sufficient quantity of water, so as to throw it over the fire at high speed. A provision should, therefore be made in modern public water scheme for fighting fire breakouts.

Following requirements must be met for the fire demand:

The minimum water pressure available at fire hydrants should be of the order of 100 to 150 kN/m² (10 to 15 m of water head) and should be maintained for 4 to 5 hours of constant use of fire hydrant.

- The jet streams are simultaneously thrown from each hydrants; one on the burning property and one each on the adjacent property on either side of the burning property. The discharge of each stream should be about 1100 I/min.
- The number of fire jets required depend on the size of population and given by $F = 2.8\sqrt{P}$, where P = Population in thousands.

Do you know? Generally, for a city of 50 Lakh population; the fire demand is 1 *l*pcd.

Calculation of Fire Demand

- For cities having population exceeding 50,000, the water required in kilo litre may be computed using the relation? Kilo litre of water required = $100\sqrt{P}$, where P = Population in thousand
- Kuchling's Formula : It states that

 $Q = 3182\sqrt{P}$ Q = Amount of water required in litre/minute <math>P = Population in thousands.

- Freeman's Formula : It states that $Q = 1136 \left[\frac{P}{5} + 10 \right]$
- National Board of Fire Underwriters Formula:
- (a) For Central congested high valued city
 - (i) When population is less than or equal to 2 Lakhs $Q = 4637\sqrt{P} \left[1 0.01\sqrt{P}\right]$
 - (ii) When population is more than 2 Lakhs, a provision for 54,000 litres/minute may be made with an extra additional provision of 9,100 to 36,400 litres/minute for a second fire.
- (b) For a residential city

The required draft for fire-fighting may be as follows:

- (i) Small or low building = 2200 litres/minute
- (ii) Larger or Higher building = 4,500 litres/minute
- (iii) High values residency, apartments, tenements = 7650 to 13500 litres/minute
- (iv) Three storeyed buildings in densely built up section = upto 27000 litres/minute
- Buston's Formula : It states that, $Q = 5663\sqrt{P}$

NOTE: All the above formulas suffer from the drawback that they are not related to the type of district served and give equal results for industrial and non-industrial areas.

Example 1.1 Compute the 'fire demand' for a city of 2 lakh population by any two formulae (including that of the National Board of Fire Underwriters)

Solution:

(i) The rate of fire demand as per National Board of Fire Underwriters Formula for a central congested city whose population is less than or equal to 2 Lakh is given by

$$Q = 4637\sqrt{P} \left[1 - 0.01\sqrt{P} \right] = 4637\sqrt{200} \left[1 - 0.01\sqrt{200} \right]$$
$$= 56303.08 \text{ l/min} = \frac{56303.08 \times 60 \times 24}{10^6} \text{MLD} = 81.08 \text{ MLD}$$

(ii) Kuchling's formula, $Q = 3182\sqrt{P} = 3182\sqrt{200} l/\text{min}$; R = 45000.27 l/m = 64.8 MLD

1.2.6 Water Required to Compensate Losses in Thefts and Wastes

This includes the water lost in leakage due to bad plumbing or damaged meters, stolen water due to unauthorised water connections, and other losses and wastes.

These losses should be taken into account while estimating the total requirements.

Even in the best managed water works, this amount may, be as high as 15% of the total consumption, which is nearly 55 *Ipcd*.

Total Maximum Water Demand

It is the sum of above six demands and IS code permits for India, a total maximum demand of 335 *Ipcd*.

The Per Capita Demand (q)

It is the annual average amount of daily water required by one person and includes the domestic use, industrial use and commercial use, public use, waste thefts etc.

It may be, therefore expressed as Per Capita Demand(q) in litres per day per head

Total yearly water requirement of the city in litres (i.e V)

365 × Design Population

For an average Indian city, as per recommendation of I.S. code, the per capita demand(q) may be taken as (Table 1.3)

1.3 Factors Affecting Per Capita Demand

The annual average demand for water (i.e. per capita demand) considerably varies for different towns or cities. This figure generally ranges between 100 to 360 litres/capita/day for Indian conditions. The variations in total water consumption of different cities or towns depend upon various factors, which must be thoroughly studied and analysed before fixing the per capita demand for design purpose. These factors are discussed below:

1.3.1 Size of the City

The total water demand depends on size of population and for the design of water supply scheme for a given population size following guidelines may be adopted (Table 1.4).

1.3.2 Climatic Conditions

At hotter and dry places, the consumption of water is generally more, because more of bathing, clearing, air-coolers, air-conditioning etc. are involved. Similarly, in extremely cold countries, more water may be consumed, because the people may keep their taps open to avoid freezing of pipes and there may be more leakage from pipe joints since metals contract with cold.

Table : 1.3 Break up for per capita demand (q) for an average Indian City			
Use	Demand in <i>I</i> pcd		
(i) Domestic Use	200 (59.7% or 60%)		
(ii) Industrial Use	50		
(iii) Commercial Use	20		
(iv) Civic or Public Use	10		
(v) Waste and thefts, etc.	55		
(vi) Fire demand	< 1		
	Total = 335		
	= Per Capita Demand (q)		

Tab	Table: 1.4 Variation in Per Capita Demand (q) with population in India				
S. No.	Population	Per Capita Demand in Liters/day/Person			
1. Less than 20000		110			
2.	20000 - 50000	110 - 150			
3.	50000 - 2 Lakhs	150 - 240			
4.	2 Lakhs - 5 Lakhs	240 - 275			
5.	5 Lakhs - 10 Lakhs	275 - 335			
6. Over 10 Lakhs		335 - 360			

1.3.3 Types of Gentry and Habits of People

Rich and upper class communities generally consume more water due to their affluent living standards.

1.3.4 Industrial and Commercial Activities

The pressure of industrial and commercial activities at a particular place increase the water consumption by large amount.

1.3.5 Quality of Water Supplies

If the quality and taste of the supplied water is good, it will be consumed more, because in that case, people will not use other sources such as private wells, hand pumps, etc. Similarly, certain industries such as boiler feeds, etc., which require standard quality waters will not develop their own supplies and will use public supplies, provided the supplied water is upto their required standards.

1.3.6 Pressure in the Distribution Systems

If the pressure in the distribution pipes is high and sufficient to make the water reach at 3rd or even 4th storage, water consumption shall be definitely more.

This water consumption increases because of two reasons:

- (i) People living in upper storage will use water freely as compared to the case when water is available scarcely to them.
- (ii) The losses and waste due to leakage are considerably increased if their pressure is high. For example, if the pressure increase from 20 m head of water (i.e. 200 kN/m²) to 30 m head of water (i.e. 300 kN/m²), the losses may go up by 20 to 30 percent.

1.3.7 Development of Sewerage Facilities

The water consumption will be more, if the city is provided with 'flush system' and shall be less if the old 'conservation system' of latrines is adopted.

1.3.8 System of Supply

Water may be supplied either continuously for all 24 hours of the day, or may be supplied only for peak period during morning and evening. The second system, i.e. intermittent supplies, may lead to some saving in water consumption due to losses occurring for lesser time and a more vigilant use of water by the consumers.

1.3.9 Cost of Water

If the water rates are high, lesser quantity may be consumed by the people. This may not lead to large savings as the affluent and rich people are little affected by such policies.

1.3.10 Policy of Metering and Method of Charging

When the supplies are metered, people use only that much of water as much is required by them. Although metered supplies are preferred because of lesser wastage, they generally lead to lesser water consumption by poor and low income group, leading to unhygienic conditions.

Factors Affecting Losses and Wastes: The various factors on which losses depend and the measure to control them are below:

(i) Water Tight Joints

(ii) Pressure in the Distribution system

(iii) System of supply

- (iv) Metering
- (v) Unauthorized connections

Example 1.2 Consider the following statements:

Assertion (A): The leakage is less when the water supply is intermittent.

Reason (R): Pressure is less in intermittent water supply

Of these statements

- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true but R is not a correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true

Ans. (c)

Variation in demand and effects on the design of various components of a water supply scheme

- The smaller the town, the more variable is the demand
- The shorter the period of draft, the greater is the departure from the mean
- (i) Maximum daily Consumption: It is generally taken as 180 percent of the average

 Therefore, Maximum daily demand = 1.8 (i.e. 180%) × Average daily demand = 1.8 q
- (ii) Maximum hourly Consumption: It is generally taken as 150 percent of its average.

Therefore, Maximum hourly consumption of the maximum day i.e. peak demand

= 1.5 (i.e. 150%) × Average hourly consumption of maximum daily demand

=
$$1.5 \times \left(\frac{\text{Maximum daily demand}}{24}\right) = 1.5 \times \left(\frac{1.8 \times q}{24}\right) = 2.7 \left(\frac{q}{24}\right)$$

- = 2.7 (Annual average hourly demand)
- (iii) Maximum Weekly Demand: Maximum weekly Consumption = 1.48 × Average weekly
- (iv) Maximum Monthly Demand: Maximum monthly consumption = 1.28 × Average monthly

Goodrich formula is used to compute maximum or peak demand.

$$P = 1.8(t)^{-0.1}$$

$$P = \frac{\text{Maximum demand}}{\text{Average demand}}$$

where, t = time in days, t = 1 for maximum daily, $t = \frac{1}{24}$ for maximum hourly

P = Annual average draft for time in t day

The GOI manual on water supply has recommended the following values of the peak factor, depending upon the population.

	Table: 1.5 Peak Factor				
S.No.	o. Population F				
1.	Upto 50000 50001 - 200000 Above 2 Lakh	3.0 2.5 2			
2.	For Rural water supply scheme, where supply is effected through stand post for only 6 hours	3			

Evidently, the peak factor tends to reduce with increasing population.

Remember: As far as the design of distribution system is concerned, it is hourly variation in computation that matters.

1.4 Coincident Draft

For general community purpose, the total draft is not taken as the sum of maximum hourly demand and fire demand, but is taken as the sum of maximum daily demand and fire demand, or the maximum hourly demand, whichever is more. i.e. maximum of

- (i) Maximum daily demand + Fire demand
- (ii) Maximum hourly demand

Example 1.3 Coincident draft in relation to water demand, is based on

(a) Peak hourly demand

- (b) Maximum daily demand
- (c) Maximum daily + fire demand
- (d) greater of (a) and (c)

Ans. (c)

Example 1.4 A water supply scheme has to be designed for a city having a population of 1,00,000. Estimate the important kinds of drafts which may be required to be recorded for an average water consumption of 250 *Ipcd*. Also record the required capacities of the major components of the proposed water works system for the city using a river as the source of supply. Assume suitable data.

Solution:

- (i) Average daily draft = (per capita average consumption in litre/person/day) \times population = $250 \times 1,00,000$ litres/day = 250×10^5 litres/d
- (ii) Maximum daily draft may be assumed as 180% of annual average daily draft
- $\therefore \text{ Maximum daily draft } = \frac{180}{100} [25 \text{ MLd}] = 45 \text{ MLD}$
- (iii) Maximum hourly draft of the maximum day: It may be assumed as 270 percent of annual average hourly draft
- $\therefore \text{ Maximum hourly draft of maximum day} = \frac{270}{100} [25 \text{ MLd}] = 67.5 \text{ MLD}$
- (iv) Fire flow may be worked out from

$$Q = 4637\sqrt{P}\left[1 - 0.01\sqrt{P}\right] = 4637\sqrt{100}\left[1 - 0.01\sqrt{100}\right] = 41733 \text{ /itre/min}$$

where P = in thousand population

$$= \frac{41733 \times 60 \times 24}{10^6}$$
 million litres/day = 61 MLD

Coincident draft = maximum daily draft + fire draft

$$= 45 + 61 = 106 MLD$$

which is greater than the maximum hourly draft of 67.5 MLD

It shows that the distribution system has to be designed for 106 MLD instead of 67.5 MLD, which proves that the fire allowance considerably affects the design of distribution system.

1.5 Design Period of Water Supply Unit

- A water supply scheme includes huge and costly structures (such as dams, reservoirs, treatment works, penstock pipes, etc.) which cannot be replaced or increased in their capacities, easily and conveniently. For example, the water mains including the distributing pipes are laid underground, and cannot be replaced or added easily, without digging the roads or disrupting the traffic.
- In order to avoid these future complications of expansion, the various components of a water supply scheme are purposely made larger, so as to satisfy the community needs for a reasonable number of years to come.
- This future period or the number of years for which a provision is made in designing the capacities of the various components of the water supply scheme is known as design period.
- The design period should neither be too long nor should it be too short. The design period cannot exceed the useful life of the component structure, and is guided by the following considerations.

Factors Governing the Design Period

- Useful life of component structures and the chances of their becoming old and obsolete. Design period should not exceed their respective values.
- Ease and difficulty that is likely to be faced in expansions, if undertaken at future dates.
- Amount and availability of additional investment likely to be incurred for additional provision.
- The rate of interest on the borrowings and the additional money invested.
- Anticipated rate of population growth, including possible shifts in communities, industries and commercial establishment.

Design Period Values

Water supply projects, under normal circumstances, may be designed for a design period of 30 years excluding completion time of 2 years. The design period recommended by the GOI manual on water supply for designing the various components of a water supply projects are given below: (Table 1.6)

	Table 1.6 : Design Period of Various Components of Water Supply Project					
S.No.	S.No. Units Design (Parameters) Discharge					
1.	Water Treatment Unit	Maximum daily demand	15 Years			
2.	Main supply pipes (Water mains)	Maximum daily demand	30 Years			
3.	Wells and Tube wells	Maximum daily demand	30-50 Years			
4.	Demand Reservoir (Overhead or ground level)	Average annual demand	50 Years			
5.	Distribution system	Maximum hourly demand/ Coincident draft	30 Years			

1.6 Population Forecasting

Population census enumerations and growth in population etc. are not only used in demographic sphere but also by Engineer and people concerned with economic growth, national planning and policy decision making in the sector of agriculture, growth in industries and infrastructure, drinking water supply schemes and other social welfare activities etc.

Population Growth

Growth of population is of great concern to people engaged in policy planning and decision making at the national level. Population growth means the change (increase) of population size between two dates.

Ε

However, a population increasing in size is said to have a positive growth rate and the one declining is to have a negative growth rate.

The number of inhabitants of a country depends on (i) The rate of growth in population and (ii) Migrations The second factor is of importance only in new countries and the old countries are the sources of migrants.

In order to predict the future population, as correctly as possible, it is necessary to know the factors affecting population growth. These are three main factors responsible for changes in population.

They are: (i) Births (ii) Deaths (iii) Migrations

All these factors are influenced by social and economic factors and conditions prevailing communities.

- The Birth rates may decrease due to excessive family planning practices and legalized abortions.
 Spread of education and development of extra recreational facilities for the people, also tend to reduce the birth rates.
- The death rates may decrease with the development and advancement of medical facilities, thereby controlling infant mortality rates and adult death rates due to control of infections and other diseases.
- The migrations are dependent upon the industrialization and commercialization of the particular cities or towns. People generally migrate from villages to cities where livelihood are available.
- Besides these three main factors, some other factors like war, natural havocs and disasters may also bring about sharp reduction in the population.
- Considering all these factors, arithmetic balancing is done to arrive at the future population. It can be expressed as $P_t = P_0 + (B D) (I E)$

Saturation Values, P.

where, P_0 and P_t refer to the size of population at the beginning and end of a time period, and B, D, I and E refers to the number of births, deaths, immigration and emigration respectively during period under consideration.

Growth Rate Curve

When all the unpredictable factors such as war, or natural disasters do not produce sudden changes, the population would probably follow the growth curve as discussed in the theory of demographic transition. This curve is S-shaped as shown in figure and is known as "the logistic curve". According to this curve, rate of growth of population varies from time to time.

The curve represents early growth *AB* at an increasing rate

(i.e. geometric or log growth,
$$\frac{dP}{dt} \propto P$$
) and late growth DE at a decreasing rate [i.e. first order $\frac{dP}{dt} \propto (P_S - P)$] as the saturation

Point of Inflexion $\frac{dp}{dt} = \text{Constant}$ Max rate $\frac{dp}{dt} \propto p$ Rate of growth = $\frac{dp}{dt}$

Fig. 1.1 Growth Rate Curve

value (P_S) is approached. The transitional $\left[i.e. \frac{dP}{dt} = \text{constant}\right]$. What the future holds for a given population, depends upon, as to where the point lie on the growth curve at a given time.

Solution: The given table is extended to table, as shown below:

The table is otherwise self-explanatory.

	Table: 1.17						
Year	Population	Increase in population	Percentage increase in population	Decrease in the percentage increase			
1940	80,000	40,000	$\frac{40,000}{80,000} \times 100 = 50\%$				
1950	1,20,000	48,000	$\frac{48,000}{1,20,000} \times 100 = 40\%$	10%			
1960	1,68,000	60,580	$\frac{60,580}{100} \times 100 = 36\%$	4%			
1970	2,28,580		1, 68, 000				
Total				14%			
Average per decade				$\frac{14}{2} = 7\%$			

(a) The expected population at the end of year 1980

$$= 2,28,580 + \left(\frac{36-7}{100}\right)2,28,580 = 2,28,580 (1.29) = 2,94,870$$

(b) The expected population at the end of year 1990

$$= 2,94,870 + \frac{29-7}{100} \times 2,94,870 = 2,94,870(1.22) = 3,59,740$$

(c) The expected population at the end of year 2000

$$= 3,59,740 + \frac{22-7}{100} \times 3,59,740 = 3,59,740(1.15) = 4,13,700$$

- The IS code lays down a limit on domestic water consumption between 135 to 225 *I*pcd, and maximum water demand for ad developing city is 335 *I*pcd.
- The fire demand for a city of 50 lakh population is hardly 1 *Ipcd*.
- 15% of total consumption, which is nearly 55 /pcd water required to compensate losses in thefts and wastes.
- Maximum daily demand is 1.8 times of average daily demand and maximum hourly or peak demand is 2.7 times the annual average hourly demand.
- Peak factor is inversely proportional to population of city.

Important Expressions

- **1.** Kuchling's formula, $Q = 3182\sqrt{P}$ where, P = population in thousands
- **2.** Freeman's formula, $Q = 1136 \left\lceil \frac{P}{5} + 10 \right\rceil$
- 3. National Board of Fire Underwriters formula, $Q = 4637\sqrt{P} \left[1 0.01\sqrt{P}\right]$

Buston's formula, $Q = 5663\sqrt{P}$ 4.

Arithmetic increase method, 5.

n = number of decades

 P_0 = population at present

 $P_n = P_0 + n \cdot \overline{x}$

 $\bar{\chi}$ = average arithmetic mean of population increase

 P_n = population after n decades

 $P_n = P_0 \left(1 + \frac{k}{100} \right)^n$ 6. Geometric increase method

where,
$$k = \text{growth rate}$$
 and $k = m\sqrt{k_1k_2k_3....k_m}$; $r = \sqrt{\frac{P_2}{P_1}} - 1$

7. Incremental increase method,

Decreasing growth rate method

$$P = P_0 + \left(\frac{r_0 - r'}{100}\right) \times P_0$$

Where,

 P_0 = Population of last known decade

 $r_0 = \text{growth rate of last decade}$

 $P_n = P_0 + n\overline{x} + \frac{n(n+1)}{2} \cdot \overline{y}$

r' = average decrease is growth rate

9. Logistic Curve method,
$$P = \frac{P_s}{1 + m \log_a^{-1}(nt)}$$

and

$$n = \frac{2.3}{t_1} \log_{10} \left[\frac{P_0 (P_s - P_1)}{P_1 (P_s - P_0)} \right] \qquad m = \frac{P_s - P_0}{P_0}$$

$$P_s = \frac{2P_0P_1P_2 - P_1^2(P_0 + P_2)}{P_0P_2 - P_1^2}$$

$$m = \frac{P_s - P_0}{P_0}$$

Objective Brain Teasers

- Q.1 The distribution mains are designed for
 - (a) Maximum daily demand
 - (b) Maximum hourly demand
 - (c) Average daily demand
 - (d) Maximum hourly demand of maximum day
- Q.2 As compared to geometrical increase method of forecasting population, arithmetical increase method gives
 - (a) Lesser value
- (b) Higher value
- (c) Same value
- (d) Accurate value
- Q.3 The total domestic consumption in a city water supply, is assumed
 - (a) 20%
- (b) 30%
- (c) 40%
- (d) 60%
- Q.4 The fire demand for ascertaining the empirical formula

$$Q = 1136 \left[\frac{P}{5} + 10 \right]$$

- (a) Kuchling's formula
- (b) Buston's formula

- (c) Freeman's formula
- (d) Underwriter's formula
- Q.5 According to Goodrich, the ratio of peak demand rate to mean demand is
 - (a) $\frac{\text{Maximum daily demand}}{\text{Average daily demand}} = 180\%$
 - (b) Maximum weekly demand = 148%

 Average weekly demand
 - (c) $\frac{\text{Maximum monthly demand}}{\text{Average monthly demand}} = 128\%$
 - (d) All of the above
- In the equation $P = \frac{P_s}{1 + \text{mlog}^{-1}(nt)}$ of a logistic Q.6

curve of population growth, the constant m is

- (a) $P_s \times P$
- (b) P_s/P
- (c) $\frac{P_s P_0}{P_n}$ (d) KP_s

Q.7 P_0 , P_1 , P_2 be the population of a city at times to t_0 , t_1 and t_2 and $t_2 = 2t_1$, the saturation value of the population P_s of the city is

(a)
$$P_s = \frac{2P_0P_1P_2 - P_1^2(P_0 + P_2)}{P_0P_2 - P_1^2}$$

(b)
$$P_s = \frac{2P_0P_1P_2 - P_2^2(P_0 + P_1)}{P_0P_2 - P_1^2}$$

(c)
$$P_S = \frac{P_0 P_1 P_2 - P_2^2 (P_0 + P_1)}{P_0 P_2 - P_1^2}$$

(d)
$$P_s = \frac{P_0 P_1 P_2 + P_2^2 (P_0 + P_1)}{P_0 P_2 - P_1^2}$$

Q.8 If P_0 is population on the start of a logistic curve, P_s is saturation population and K is a constant of equality, population of the city is given by

(a)
$$\log\left(\frac{P_s - P}{P}\right) + \log\left(\frac{P_s - P_0}{P_0}\right) + KP_s t = 0$$

(b)
$$\log\left(\frac{P_s - P}{P}\right) - \log\left(\frac{P_s - P_0}{P_0}\right) + KP_s t = 0$$

(c)
$$\log\left(\frac{P_s - P}{P}\right) \times \log\left(\frac{P_s - P_0}{P_0}\right) + KP_s t = 0$$

(d)
$$\log\left(\frac{P_s - P}{P}\right) \div \log\left(\frac{P_s - P_0}{P_0}\right) + KP_s t = 0$$

- **Q.9** Consider the following statements:
 - 1. Maximum hourly consumptions of the maximum day is called peak demand.
 - 2. The hourly variation factor is generally taken as 1.5.
 - 3. Peak factor tends to reduce with the increasing population

Which of these statements is/are correct?

- (a) Only 2
- (b) Both 1 and 2
- (c) Both 1 and 3
- (d) 1, 2 and 3
- Q.10 The population of a town in three consecutive year are 5000, 7000 and 8400 respectively. The population of the town in the fourth consecutive year according to geometrical increase method is
 - (a) 9500
- (b) 9800
- (c) 10100
- (d) 10920

Q.11 The population figure in a growing town are as follows:

Year	Population
1970	40,000
1980	46,000
1990	53,000
2000	58,000

Predicted population in 2010 by Arithmetic Regression method is

- (a) 62,000
- (b) 63,000
- (c) 64,000
- (d) 65,000
- Q.12 The present population of a community is 28000 with an average water consumption of 150 /pcd. The existing water treatment plant has a design capacity of 6000m³/d. It is expected that the population will increase to 48000 during the next 20 years. The number of years from now when the plant will reach its design capacity, assuming an arithmetic rate of population growth, will be
 - (a) 5.5 years
- (b) 8.6 years
- (c) 12 years
- (d) 16.5 years
- Q.13 Which of the following factors has the maximum effect on figure of per capita demand of water supply of a given town?
 - (a) Method of charging of the consumption
 - (b) Quality of water
 - (c) System of supply intermittent or continuous
 - (d) Industrial demand
- Q.14 Which one of the following methods given the best estimate of population growth of a community with limited land area for future expansion?
 - (a) Arithmetical increase method
 - (b) Geometrical increase method
 - (c) Incremental increase method
 - (d) Logistic method

Direction: Each of the next consists of two statements, one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answers to these items using the codes given below:

Codes:

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is not the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- Q.15 Assertion (A): In estimating population for assessing water supply demand, the geometric progression (GP) method gives correct estimate for a developing city.

Reason (R): In the GP method, a constant rate of increase in population is assumed.

Q.16 Assertion (A): The future population is predicted on the basis of knowledge of the city and its environment

Reason (R): The future population depends on the trade and expansion of the city, discovery of mineral deposits, power generation etc.

- Q.17 Which one of the following Acts/Rules has provision for "No right to appeal"?
 - (a) Environment (Protection) Act, 1986
 - (b) The hazardous waste (management and handling) rules, 1989
 - (c) Manufacture, storage and import of Hazardous chemical rules, 1989
 - (d) Environment (Protection) Rules, 1992
- Q.18 When was the water (prevention and control of pollution) Act enacted by the Indian Parliament?
 - (a) 1970
- (b) 1974
- (c) 1980
- (d) 1985
- Q.19 Per Capita water demand is defined as the litre of water consumed daily by each person. Naturally it has to be some average value, over a period of time. Over how much period, the averaging is done here:
 - (a) 24 hours
- (b) 1 year
- (c) 10 years
- (d) 35 year
- Q.20 The water treatment units may be designed, including 100% reserves, for water demand equal to
 - (a) Average daily
- (b) Twice of (a)

- (c) Maximum daily (d) Twice of (c)
- Q.21 The population of a town in three consecutive decades are 1 Lakh, 1.4 Lakh, 1.60 Lakh, respectively. The population of this town in the fourth consecutive decade, according to geometric methods would be
 - (a) 1.9 Lakh
- (b) 2.024 Lakh
- (c) 2.2 Lakh
- (d) 2.5 Lakh
- Q.22 The suitable method for forecasting population for a young and a rapidly developing city is
 - (a) arithmetic mean method
 - (b) geometric mean method
 - (c) comparative graphical method
 - (d) none of these
- Q.23 Which among the following brings about the Hazardous waste management and handling rules in India?
 - (a) Central Pollution Control Board
 - (b) Ministry of Environment and Forests
 - (c) Ministry of Urban Development
 - (d) Ministry of Rural Development
- Q.24 Water losses in water supply system, are assumed as
 - (a) 5%
- (b) 7.5%
- (c) 15%
- (d) 25%
- Q.25 The pipe mains carrying water from the source to the reservoir are designed for the
 - (a) maximum daily draft
 - (b) average daily draft
 - (c) maximum hourly draft of the maximum day
 - (d) maximum weekly draft
- Q.26 The distribution system in water supplies is designed on the basis of
 - (a) average daily demand
 - (b) peak hourly demand
 - (c) coincident draft
 - (d) greater of (b) and (c)
- Q.27 The multiplying factor, as applied to obtain the peak hourly demand, in relation to the average daily demand (per hour of course), is
 - (a) 1.5
- (b) 1.8
- (c) 2.0
- (d) 2.7

- **Q.28** Which of the following statements about Design period are true?
 - 1. It is concerned with economy of investments
 - 2. It takes into account of aspects like life and durability and ease or difficulty of use of installations.
 - 3. It considers the frequency of occurrence of extremes of river flow
 - 4. It is concerned with estimating future requirements.

Codes:

- (a) 1, 2, 3 and 4
- (b) 2 and 3
- (c) 1, 2 and 4
- (d) 1, 3 and 4
- Q.29 Consider the following statements:

The daily per capita consumption of water apparently increase with

- 1. higher standard of living of people
- 2. availability of sewerage in the city
- 3. metered water supply
- 4. wholesome and potable public supply of water Which of the above statements are correct?
- (a) 1, 2 and 3
- (b) 2, 3 and 4
- (c) 1, 3 and 4
- (d) 1, 2 and 4

Answers

1. (d)	2. (a)	3. (d)	4. (c)	5. (d)
--------	--------	--------	--------	--------

26. (d) 27. (d) 28. (c) 29. (d)

Hints and Explanations:

Ans.3 (d)

Total domestic consumption in a city water supply is assumed to 55 to 60%

Ans.4 (c)

The freeman's formula $Q = 1136.5 \left[\frac{P}{5} + 10 \right]$

Ans.6 (c)

The constant *m* in logistic curve $m = \frac{P_s - P_0}{P_0}$

Ans.11 (c)

Year	Population	Decadal increase
1970	40,000	6000
1980	46,000	7000
1990	53,000	5000
	2000	58,000

$$\therefore \text{ Design growth rate} = \frac{6000 + 7000 + 5000}{3}$$

= 6000 per decade

In 2010 population will be P = 58000 + 6000 = 64000

Ans.12(c)

Population after *n* years

$$P_n = P_0 + n\overline{x}$$

 \overline{x} is arithmetic design growth rate

Given
$$P_0 = 28000$$

For $n = 20$, $P_{20} = 48000$

$$\therefore \ \overline{x} = \frac{48000 - 28000}{20} = 1000 \text{ per year}$$

The population when design capacity will be required,

$$P_n = \frac{6000 \times 1000}{150} = 40000$$

... Number of years to reach the plant at design capacity,

$$\eta = \frac{P_n - P_0}{\overline{x}} = \frac{40000 - 28000}{1000} = 12.0 \text{ years}$$