Chemical Engineering

Instrumentation and Process Control

Comprehensive Theory

with Solved Examples and Practice Questions

MADE EASY Publications Pvt. Ltd.

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016

E-mail: infomep@madeeasy.in

Contact: 011-45124612, 0-9958995830, 8860378007

Visit us at: www.madeeasypublications.org

Instrumentation and Process Control

© Copyright, by MADE EASY Publications Pvt. Ltd.

All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photo-copying, recording or otherwise), without the prior written permission of the above mentioned publisher of this book.

First Edition: 2022

Contents

Instrumentation and Process Control

Ch	apter 1	2.11 Multicapacity Process (as second order systems)62
Int	roduction1	2.12 Dead Time in a Process65
1.1	Open Loop Control Systems 1	Student's Assignments68
1.2	Closed Loop Control Systems2	Chapter 3
1.3	Comparison Between Open Loop and	Close Loop Transfer Functions75
	Closed Loop Control Systems3	•
1.4	Laplace Transformation3	3.1 Process
1.5	Transfer Function and Impulse Response Function 8	3.2 Automatic Control
1.6	Standard Test Signals10	3.3 Feed Forward Control Technique
1.7	Poles and Zeros of a Transfer Function11	3.4 Block Diagrams : Fundamentals78
1.8	Properties of Transfer Function13	3.5 Block Diagram of a Closed-loop System79
1.9	Methods of Analysis14	3.6 Block Diagram Transformation Theorems81
1.5	Student's Assignments	3.7 Feedback Control91
	Student's Assignments10	3.8 Types of Feedback Controllers93
Ch	apter 2	3.9 Closed Loop Response Block Diagram96
	•	3.10 Composite Control Actions 102
Dy	namic Behaviour of First	Student's Assignments104
an	d Second Order System20	
2.1	Introduction20	Chapter 4
2.2	Transient and Steady State Response20	Controller and Advanced Control
2.3	Steady State Error21	Strategies108
2.4	Transients State Analysis23	4.1 Industrial Controllers108
2.5	Time Response of a Second Order Control System30	4.2 Proportional (P) Controller109
2.6	Need of a Mathematical Modelling50	4.3 Integral (I) Controller (Reset Mode)110
2.7	State Variables and State Equations	4.4 Derivative (D) Controller (Rate Mode)111
	for Chemical Process50	4.5 Proportional Integral (P-I) Controller113
2.8	Continuous Stirred Tank Reactor (CSTR)51	4.6 Proportional Derivative (P-D) Controller114
2.9		4.7 Proportional Integral Derivative (P-I-D) Controller 114

2.10 Second Order System60

4.9 Feed Forward Control122	5.8 Gain Margin and Phase Margin for		
4.10 Designing of Feedback Controllers125	Second Order Control System159		
4.11 Controller Tuning	5.9 Bode Plots163		
4.12 Controlling Elements130	Student's Assignments165		
Student's Assignments136			
Chapter 5	Chapter 6		
Chapter 5	Sensors, Transducers and		
Stability and Frequency Analysis	P & ID Symbol171		
of Control Systems139	6.1 Introduction171		
5.1 The Concept of Stability139	6.2 Sensor171		
5.2 Frequency Analysis of Control Systems 152	6.3 Transducer171		
5.3 Advantages of Frequency Response152	6.4 Sensor/transducers specifications172		
5.4 Frequency Response Analysis of	6.5 Classification of sensors		
Second Order Control System153	6.6 Equipment Symbols176		
5.5 Correlation between Step Response and Frequency	6.7 Piping Symbols177		
Response in the Standard Order System155	6.8 Instrument symbols		
5.6 Frequency Domain Analysis of Dead Time or	6.9 Valve Symbols179		
Transportation Lag Elements156	Student's Assignments180		
5.7 Relative Stability: Gain Margin and Phase Margin158			

CHAPTER

Introduction

Control System:

Control system is a means by which any quantity of interest in a machine, mechanism or other equipment is maintained or altered in accordance with a desired manner.

Control system can also be defined as the combination of elements arranged in a planned manner wherein each element causes an effect to produce a desired output.

Control systems are classified into two general categories as Open-loop and close-loop systems.

1.1 **Open Loop Control Systems**

An open loop control system is one in which the control action is independent of the output.

Open-loop control system

This is the simplest and most economical type of control system and does not have any feedback arrangement.

Some common examples of open-loop control systems are

- (a) Traffic light controller
- (b) Electric washing machine
- (c) Automatic coffee server
- (d) Bread toaster

Advantages of Open Loop Control Systems

- (a) Simple and economic
- (b) No stability problem

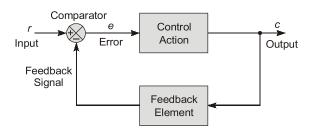
Disadvantages of Open Loop Control Systems

- (a) Inaccurate
- (b) Unrealisable
- (c) The effect of parameter variation and external noise is more

Note: Open loop control systems does not require performance analysis.

1.2 Closed Loop Control Systems

A *closed loop control system* is one in which the control action is some how dependent on the output.



Closed loop control system

The closed loop system has same basic features as of open loop system with an additional feedback feature. The actual output is measured and a signal corresponding to this measurement is fedback to the input section, where it is with the input to obtain the desired output.

Some common examples of closed loop control systems are:

- (a) Electric iron
- (b) DC motor speed control
- (c) A missile launching system (direction of missile changes with the location of moving target)
- (d) Radar tracking system
- (e) Human respiratory system
- (f) Autopilot system
- (g) Economic inflation

Advantages of Closed Loop Control Systems

- (a) Accurate and reliable
- (b) Reduced effect of parameter variation
- (c) Bandwidth of the system can be increased with negative feedback
- (d) Reduced effect of non-linearities

Disadvantages of Closed Loop Control Systems

- (a) The system is complex and costly
- (b) System may become unstable
- (c) Gain of the system reduces with negative feedback

- Feedback is not used for improving stability
- An open loop stable system may also become unstable when negative feedback is applied
- Except oscillators, in positive feedback, we have always unstable systems.

1.3 Comparison Between Open Loop and Closed Loop Control Systems

Open Loop System		Closed Loop System	
1.	So long as the calibration is good, open-loop system will be accurate	1.	Due to feedback, the close-loop system is more accurate
2.	Organization is simple and easy to construct	2.	Complicated and difficult
3.	Generally stable in operation	3.	Stability depends on system components
4.	If non-linearity is present, system operation degenerates	4.	Comparatively, the performance is better than open-loop system if non-linearity is present

Example-1.1 Match List-I (Physical action or activity) with List-II (Category of system) and select the correct code:

List-I

- A. Human respiration system
- B. Pointing of an object with a finger
- C. A man driving a car
- D. A thermostatically controlled room heater
 List II
- 1. Man-made control system
- 2. Natural including biological control system
- 3. Control system whose components are both man-made and natural

Codes:

	Α	В	С	D
(a)	2	2	3	1
(b)	3	1	2	1
(c)	3	2	2	3
(d)	2	1	3	3

Solution: (a)

1.4 Laplace Transformation

In order to transform a given function of time f(t) into its corresponding Laplace transform first multiply f(t) by e^{-st} , s being a complex number ($s = \sigma + j\omega$). Integrate this product with respect to time with limits from zero to ∞ . This integration results in Laplace transform of f(t), which is denoted by F(s) or $\mathcal{L}f[(t)]$.

The mathematical expression for Laplace transform is,

$$\mathcal{L}f[(t)] = F(s), t \ge 0$$

where,

$$F(s) = \int_0^\infty f(t).e^{-st}dt$$

The original time function f(t) is obtained back from the Laplace transform by a process called inverse Laplace transformation and denoted as \mathcal{L}^{-1}

Thus,
$$\mathcal{L}^{-1}\left[Lf(t)\right] = \mathcal{L}^{-1}\left[F(s)\right] = f(t)$$

The time function f(t) and its Laplace transform F(s) form a transform pair.

S.No.	f(t)	F(s) = L[f(t)]
1.	$\delta(t)$ unit impulse at $t=0$	1
2.	u(t) unit step at $t = 0$	$\frac{1}{s}$
3.	u(t-T) unit step at $t=T$	$\frac{1}{s}e^{-sT}$
4.	t	
5.	$\frac{t^2}{2}$	$\frac{1}{s^2}$ $\frac{1}{s^3}$
6.	t ⁿ	$\frac{n!}{s^{n+1}}$
7.	e ^{at}	$\frac{1}{s-a}$
8.	e ^{-at}	$\frac{1}{s+a}$
9.	t e ^{at}	$\frac{1}{(s-a)^2}$
10.	t e ^{−at}	$\frac{1}{(s+a)^2}$
11.	t ⁿ e ^{−at}	$\frac{n!}{(s+a)^{n+1}}$
12.	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
13.	cos ωt	$\frac{s}{s^2 + \omega^2}$

Table of Laplace Transform Pairs

Basic Laplace Transform Theorems

Basic theorems of Laplace transform are given below:

(a) Laplace Transform of Linear Combination:

$$\mathcal{L}[af_1(t) + bf_2(t)] = aF_1(s) + bF_2(s)$$

where $f_1(t)$, $f_2(t)$ are functions of time and a, b are constants.

(b) If the Laplace Transform of f(t) is F(s), then:

(i)
$$\mathcal{L}\left[\frac{df(t)}{dt}\right] = [sF(s) - f(0^+)]$$

(ii)
$$\mathcal{L}\left[\frac{d^2f(t)}{dt^2}\right] = \left[s^2F(s) - sf(0^+) - f'(0^+)\right]$$

(iii)
$$\mathcal{L}\left[\frac{d^3f(t)}{dt^3}\right] = \left[s^3F(s) - s^2f(0^+) - sf'(0^+) - f''(0^+)\right]$$

where $f(0^+)$, $f''(0^+)$, $f'''(0^+)$... are the values of f(t), $\frac{df(t)}{dt}$, $\frac{d^2f(t)}{dt^2}$... at $t = (0^+)$.

(c) If the Laplace Transform of f(t) is F(s), then:

(i)
$$\mathcal{L}\left[\int f(t)\right] = \left[\frac{F(s)}{s} + \frac{f^{-1}(0^+)}{s}\right]$$

(ii)
$$\mathcal{L}\left[\iint f(t)\right] = \left[\frac{F(s)}{s^2} + \frac{f^{-1}(0^+)}{s^2} + \frac{f^{-2}(0^+)}{s}\right]$$

(iii)
$$\mathcal{L}\left[\iiint f(t)\right] = \left[\frac{F(s)}{s^3} + \frac{f^{-1}(0^+)}{s^3} + \frac{f^{-2}(0^+)}{s^2} + \frac{f^{-3}(0^+)}{s}\right]$$

where $f^{-1}(0^+)$, $f^{-2}(0^+)$, $f^{-3}(0^+)$... are the values of $\int f(t)$, $\int \int f(t)$, ... at $t = (0^+)$.

(d) If the Laplace Transform of f(t) is F(s), then:

$$\mathcal{L}[e^{\pm at}f(t)] = F(s \mp a)$$

(e) If the Laplace Transform of f(t) is F(s), then:

$$\mathcal{L}[t\,f(t)] = -\frac{d}{ds}F(s)$$

Initial Value Theorem:

$$\lim_{t \to 0} f(t) = \lim_{s \to \infty} s \mathcal{L}[f(t)]$$

or
$$\lim_{t \to 0} f(t) = \lim_{s \to \infty} sF(s)$$

(g) Final Value Theorem:

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s \mathcal{L}[f(t)]$$

or
$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s)$$

The final value theorem gives the final value ($t \to \infty$) of a time function using its Laplace transform and as such very useful in the analysis of control systems. However, if the denominator of sF(s) has any root having real part as zero or positive, then the final value theorem is not valid.

Example-1.2 Laplace transform of $sin(\omega t + \alpha)$ is

(a)
$$\frac{s\cos\alpha + \omega\sin\alpha}{s^2 + \omega^2}$$

(b)
$$\frac{\omega}{s^2 + \omega^2} \cos \alpha$$

(c)
$$\frac{s}{s^2 + \omega^2} \sin \alpha$$

(d)
$$\frac{s \sin \alpha + \omega \cos \alpha}{s^2 + \omega^2}$$

Solution: (d)

$$\sin(\omega t + \alpha) = \sin\omega t \cos\alpha + \cos\omega t \sin\alpha$$

$$\mathcal{L}\{\sin(\omega t + \alpha)\} = \frac{\omega \cos \alpha}{s^2 + \omega^2} + \frac{s \sin \alpha}{s^2 + \omega^2}$$
$$= \frac{s \sin \alpha + \omega \cos \alpha}{s^2 + \omega^2}$$

Given $\mathcal{L}[f(t)] = F(s) = \int_{0}^{\infty} f(t) e^{-st} dt$, which of the following expressions are correct?

1.
$$\mathcal{L}\{f(t-a)\ u(t-a)\} = F(s)e^{-sa}$$

1.
$$\mathcal{L}\{f(t-a)\ u(t-a)\} = F(s)e^{-sa}$$
 2. $\mathcal{L}\{t\ f(t)\} = \frac{-dF(s)}{ds}$

3.
$$\mathcal{L}\{(t-a)f(t)\} = as F(s)\}$$

4.
$$\mathcal{L}\left\{\frac{df(t)}{dt}\right\} = sF(s) - f(0^+)$$

Select the correct answer using the codes given below

Solution: (b)

These are the properties of Laplace transform.

Example - 1.4 Match List-I [Function in time domain f(t)] with List -II [Property] and select the correct answer using the code given below the lists:

A.
$$\sin \omega_0 tu(t-t_0)$$

1.
$$\frac{\omega_0}{s^2 + \omega_0^2}$$

B.
$$\sin \omega_0 (t-t_0) u(t-t_0)$$

2.
$$\left\{\frac{\omega_0}{s^2 + \omega_0^2}\right\} e^{-t_0 s}$$

C.
$$\sin \omega_0 (t-t_0) u(t)$$

3.
$$\frac{e^{-t_0s}}{\sqrt{s^2+\omega_0^2}}\sin\left(\omega_0t_0+\tan^{-1}\frac{\omega_0}{s}\right)$$

D.
$$\sin \omega_0 t u(t)$$

4.
$$-\frac{1}{\sqrt{s^2 + \omega_0^2}} \sin\left(\omega_0 t_0 - \tan^{-1} \frac{\omega_0}{s}\right)$$

Codes:

Solution: (c)

Example-1.5 Find the inverse Laplace transform of the following functions:

(i)
$$F(s) = \frac{s+2}{s^2+4s+6}$$

(ii)
$$F(s) = \frac{5}{s(s^2 + 4s + 5)}$$

(ii)
$$F(s) = \frac{5}{s(s^2 + 4s + 5)}$$
 (iii) $F(s) = \frac{s^2 + 2s + 3}{s^3 + 6s^2 + 12s + 8}$

Solution:

(i)
$$F(s) = \frac{s+2}{s^2+4s+6}$$

The term $(s^2 + 4s + 6)$ can be expressed as $[(s+2)^2 + (\sqrt{2})^2]$

:.
$$F(s) = \frac{s+2}{(s+2)^2 + (\sqrt{2})^2}$$

Taking inverse Laplace transform on both sides

$$\mathcal{L}^{-1} F(s) = \mathcal{L}^{-1} \frac{s+2}{(s+2)^2 + (\sqrt{2})^2}$$

$$f(t) = e^{-2t} \cos \sqrt{2}t$$

(ii)
$$F(s) = \frac{5}{s(s^2 + 4s + 5)}$$

Using partial fraction expansion

$$\frac{5}{s(s^2+4s+5)} = \frac{A}{s} + \frac{Bs+C}{s^2+4s+5}$$

The coefficients are determined as A = 1, B = -1 and C = -4

$$F(s) = \frac{1}{s} - \frac{s+4}{s^2 + 4s + 5}$$

The term $(s^2 + 4s + 5)$ can be expressed as $[(s + 2)^2 + (1)^2]$

$$F(s) = \frac{1}{s} - \frac{s+2}{[(s+2)^2 + (1)^2]} - 2\frac{1}{[(s+2)^2 + (1)^2]}$$

Taking inverse Laplace transform on both sides

$$\mathcal{L}^{-1} F(s) = \mathcal{L}^{-1} \left[\frac{1}{s} - \frac{s+2}{(s+2)^2 + (1)^2} - 2 \frac{1}{(s+2)^2 + (1)^2} \right]$$

or
$$\mathcal{L}^{-1} F(s) = \mathcal{L}^{-1} \frac{1}{s} - \mathcal{L}^{-1} \frac{s+2}{[(s+2)^2 + (1)^2]} - \mathcal{L}^{-1} 2 \frac{1}{[(s+2)^2 + (1)^2]}$$

$$f(t) = (1 - e^{-2t} \cos t - 2e^{-2t} \sin t)$$

(iii)
$$F(s) = \frac{s^2 + 2s + 3}{s^3 + 6s^2 + 12s + 8}$$

The denominator $(s^3 + 6s^2 + 12s + 8)$ can be expressed as $(s + 2)^3$

$$F(s) = \frac{s^2 + 2s + 3}{(s+2)^3}$$

Using partial fraction expansion

$$F(s) = \frac{A}{(s+2)} + \frac{B}{(s+2)^2} + \frac{C}{(s+2)^3}$$

The coefficients are determined as A = 1, B = -2 and C = 3

$$F(s) = \frac{1}{s+2} - \frac{2}{(s+2)^2} + \frac{3}{(s+2)^3}$$

Taking inverse Laplace transform on both sides

$$\mathcal{L}^{-1} F(s) = \mathcal{L}^{-1} \left[\frac{1}{s+2} - \frac{2}{(s+2)^2} + \frac{3}{(s+2)^3} \right]$$

or
$$\mathcal{L}^{-1} F(s) = \mathcal{L}^{-1} \frac{1}{s+2} - \mathcal{L}^{-1} \frac{2}{(s+2)^2} + \mathcal{L}^{-1} \frac{3}{(s+2)^3}$$

$$\therefore f(t) = e^{-2t} - 2t e^{-2t} + \frac{3}{2} t^2 e^{-2t}$$

or
$$f(t) = e^{-2t} \left[1 - t \left(2 - \frac{3}{2}t \right) \right]$$

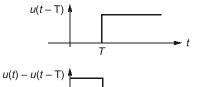
Example -1.6

$$F(s) = \frac{(1 - e^{-sT})}{s}$$
 is the Laplace transform of

- (a) a pulse of width T
- (b) a square wave of period T
- (c) a unit step delayed by T
- (d) a ramp delayed by T

Solution: (a)

$$F(s) = \frac{1 - e^{-sT}}{s}$$
$$= \frac{1}{s} - e^{-sT} \left(\frac{1}{s}\right)$$
$$f(t) = u(t) - u(t - T)$$



:.

$$F(s) = \frac{1}{(s+1)^2 (s+2)}$$

find f(t).

Example-1.7

Solution:

The partial fraction expansion of F(s) is

$$F(s) = A + \frac{B}{s+1} + \frac{C}{(s+1)^2} + \frac{D}{s+2}$$

The coefficients A, B, C, D are given by

$$A = 0$$

$$B = \frac{d}{ds} (s+1)^2 F(s) \Big|_{s=-1} = \frac{d}{ds} \left(\frac{1}{s+2} \right) \Big|_{s=-1} = -1$$

$$C = (s+1)^2 F(s) \Big|_{s=-1} = \frac{1}{s+2} \Big|_{s=-1} = 1$$

$$D = (s+2) F(s) \Big|_{s=-2} = 1$$

Thus,

$$F(s) = -\frac{1}{s+1} + \frac{1}{(s+1)^2} + \frac{1}{s+2}$$

 \Rightarrow

$$f(t) = -e^{-t} u(t) + e^{-t} r(t) + e^{-2t} u(t)$$

1.5 Transfer Function and Impulse Response Function

In control theory, transfer functions are commonly used to characterise the input-output relationships of components or systems that can be described by linear, time-invariant differential equations.

Transfer Function

The transfer function of a linear, time-invariant, differential equation system is defined as the ratio of the Laplace transform of the output (response function) to the Laplace transform of the input (driving function) under the assumption that all initial conditions are zero.

Linear Systems

A system is called linear if the principle of superposition and principle of homogeneity apply. The principle of superposition states that the response produced by the simultaneous application of two different forcing functions is the sum of the two individual responses. Hence, for the linear system, the response to several inputs can be calculated by transferring one input at a time and adding the results. It is the principle that allows one to build up complicated solutions to the linear differential equations from simple solutions.

In an experimental investigation of a dynamic system, if cause and effect are proportional, thus implying that the principle of superposition holds, then the system can be considered as linear.

Linear Time-Invariant Systems and Linear-Time Varying Systems

A differential equation is linear if the coefficients are constants or functions only of the independent variable. Dynamic systems that are composed of linear time-invariant lumped-parameter components may be described by linear time-invariant differential equations i.e. constant-coefficient differential equations. Such systems are called linear time-invariant (or linear constant-coefficient) systems. Systems that are represented by differential equations whose coefficients are function of time are called linear time varying systems. An example of a time-varying control system is a space craft control system (the mass of a space craft changes due to fuel consumption).

The definition of transfer function is easily extended to a system with multiple inputs and outputs (i.e. a multivariable system). In a multivariable system, a linear differential equation may be used to describe the relationship between a pair of input and output variables, when all other inputs are set to zero. Since the principle of superposition is valid for linear systems, the total effect (on any output) due to all the inputs acting simultaneously is obtained by adding up the outputs due to each input acting alone.

Example-1.8 When deriving the transfer function of a linear element

- (a) both initial conditions and loading are taken into account
- (b) initial conditions are taken into account but the element is assumed to be not loaded.
- (c) initial conditions are assumed to be zero but loading is taken into account
- (d) initial conditions are assumed to be zero and the element is assumed to be not loaded.

Solution: (c)

While deriving the transfer function of a linear element only initial conditions are assumed to be zero, loading (or input) can't assume to be zero.

Example-1.9

If the initial conditions for a system are inherently zero, what does it physically

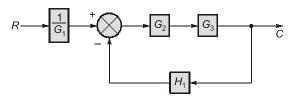
mean?

- (a) The system is at rest but stores energy
- (b) The system is working but does not store energy
- (c) The system is at rest or no energy is stored in any of its part
- (d) The system is working with zero reference input

Solution: (c)

A system with zero initial conditions is said to be at rest since there is no stored energy.

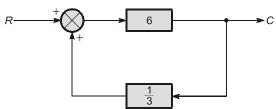
Q.1 A feedback control system is shown below. Find the transfer function for this system.



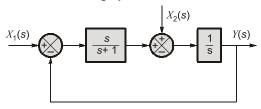
Q.2 The step response of a system is given as

$$y = 1 - \frac{7}{3}e^{-t} + \frac{3}{2}e^{-2t} - \frac{1}{6}e^{-4t}.$$
 If the transfer function of this system is
$$\frac{(s+a)}{(s+b)(s+c)(s+d)}$$
 then $a+b+c+d$ is ______.

- **Q.3** A system has the transfer function $\frac{(1-s)}{(1+s)}$. Its gain at $\omega = 1$ rad/sec is _____
- The close loop gain of the system shown below



Q.5 For the following system,



when $X_1(s) = 0$, the transfer function $\frac{Y(s)}{X_2(s)}$ is

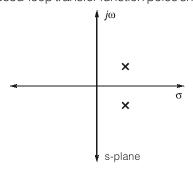
(a)
$$\frac{s+1}{s^2}$$

(b)
$$\frac{1}{s+1}$$

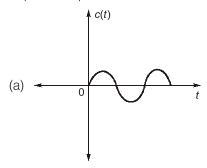
(c)
$$\frac{s+2}{s(s+1)}$$

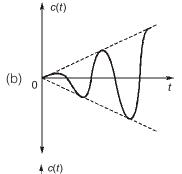
(d)
$$\frac{s+1}{s(s+2)}$$

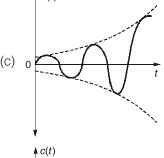
Q.6 If closed-loop transfer function poles shown below

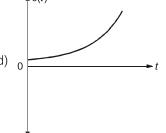


Impulse response is









Publications

- Q.7 The impulse response of several continuous systems are given below. Which is/are stable?
 - **1.** $h(t) = te^{-t}$
 - **2.** h(t) = 1
 - 3. $h(t) = e^{-t} \sin 3t$
 - **4.** $h(t) = \sin \omega t$
 - (a) 1 only
- (b) 1 and 3
- (c) 3 and 4
- (d) 2 and 4
- Q.8 Ramp response of the transfer function

$$F(s) = \frac{s+1}{s+2}$$
 is

- (a) $\frac{1}{4} \frac{1}{4}e^{-2t} + \frac{1}{2}t$ (b) $\frac{1}{4}e^{-2t} + \frac{1}{4} + \frac{1}{2}t$
- (c) $\frac{1}{2} \frac{1}{2}e^{-2t} + t$ (d) $\frac{1}{2}e^{-2t} + \frac{1}{2} t$
- **Q.9** Which of the following statements are correct?
 - 1. Transfer function can be obtained from the signal flow graph of the system.
 - 2. Transfer function typically characterizes to linear time invariant systems.
 - 3. Transfer function gives the ratio of output to input in frequency domain of the system.
 - (a) 1 and 2
- (b) 2 and 3
- (c) 1 and 3
- (d) 1, 2 and 3
- Q.10 Which of the following is not a desirable feature of a modern control system?
 - (a) Quick response
 - (b) Accuracy
 - (c) Correct power level
 - (d) Oscillations
- Q.11 In regenerating feedback, the transfer function is given by

(a)
$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)}$$

(b)
$$\frac{C(s)}{R(s)} = \frac{G(s) H(s)}{1 - G(s) H(s)}$$

(c)
$$\frac{C(s)}{R(s)} = \frac{G(s)H(s)}{1 + G(s)H(s)}$$

(d)
$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 - G(s)H(s)}$$

Q.12 Consider the following statements regarding the advantages of closed loop negative feedback control systems over open-loop systems:

- 1. The overall reliability of the closed loop systems is more than that of open-loop system.
- 2. The transient response in the closed loop system decays more quickly than in openloop system.
- 3. In an open-loop system, closing of the loop increases the overall gain of the system.
- 4. In the closed-loop system, the effect of variation of component parameters on its performance is reduced.
- Of these statements
- (a) 1 and 3 are correct
- (b) 1, 2 and 4 are correct
- (c) 2 and 4 are correct
- (d) 3 and 4 are correct
- Q.13 Match List-I (Time function) with List-II (Laplace transforms) and select the correct answer using the codes given below lists:

List-I

List-II

A.
$$[af_1(t) + bf_2(t)]$$

1.
$$aF_1(s) + bF_2(s)$$

B.
$$\left[e^{-at}f(t)\right]$$

2.
$$sF(s) + f(0)$$

C.
$$\left[\frac{df(t)}{dt}\right]$$

3.
$$\frac{1}{s}F(s)$$

D.
$$\left[\int_{0}^{t} f(x) dx\right]$$
 4. $sF(s) - f(0^{-})$

4.
$$sF(s) - f(0^{-})$$

5.
$$F(s + a)$$

Codes:

	Α	В	(
(a)	5	2	(

(b) 1

(c) 2 (d) 1

Q.14 If a system is represented by the differential

equation, is of the form $\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 9y = r(t)$

- (a) $k_1 e^{-t} + k_2 e^{-9t}$ (b) $(k_1 + k_2) e^{-3t}$ (c) $k e^{-3t} \sin(t + \phi)$ (d) $t e^{-3t} u(t)$
- Q.15 A linear system initially at rest, is subject to an input signal $r(t) = 1 - e^{-t}$ ($t \ge 0$). The response of

the system for t > 0 is given by $c(t) = 1 - e^{-2t}$. The transfer function of the system is

- (a) $\frac{(s+2)}{(s+1)}$ (b) $\frac{(s+1)}{(s+2)}$ (c) $\frac{2(s+1)}{(s+2)}$ (d) $\frac{(s+1)}{2(s+2)}$

ANSWERS

- **1.** (sol.) **2.** (15)
- **3.** (1)
 - **4.** (-6)
- **6.** (c) **7.** (b)
- **8.** (a)
- **9.** (d)
- 10. (...)

5. (d)

- **11.** (d) **12.** (b)
- **13.** (...)
- **14.** (d) **15.** (c)
- Explanation _____

1.
$$\left(\frac{G_2G_3}{G_1(1+H_1G_2G_3)}\right)$$

Multiply G_2 and G_3 and apply feedback formula and then again multiply with $\frac{1}{G_1}$

$$T(s) = \frac{G_2 G_3}{G_4 (1 + G_2 G_2 H_4)}$$

2. (15)

$$y = 1 - \frac{7}{3}e^{-t} + \frac{3}{2}e^{-2t} - \frac{1}{6}e^{-4t}$$

$$p(t) = \frac{dy}{dt}$$

$$= \frac{7}{3}e^{-t} + \frac{3}{2} \times (-2) \times e^{-2t} - \left(\frac{1}{6}\right)(-4)e^{-4t}$$

Laplace transform of p(t)

$$p(s) = \frac{7/3}{s+1} + \frac{-3}{s+2} + \frac{2/3}{s+4}$$
$$= \frac{s+8}{(s+1)(s+2)(s+4)}$$
$$\Rightarrow a+b+c+d=15$$

3. (1)

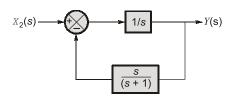
For all pass system, gain = '1' at all frequencies.

4.(-6)

C.L.T.F. =
$$\frac{6}{1-6 \times \frac{1}{3}} = \frac{6}{-1} = -6$$

5. (d)

Redrawing the block diagram with $X_1(s) = 0$



The transfer function

$$T(s) = \frac{Y(s)}{X_2(s)} = \frac{G(s)}{1 + G(s)H(s)}$$
 ...(i)

Here,
$$G(s) = \frac{1}{s}$$
 and $H(s) = \frac{s}{s+1}$

$$\frac{Y(s)}{X_2(s)} = \frac{1/s}{1 + \frac{1}{s} \times \frac{s}{s+1}} = \frac{(s+1)}{s(s+2)}$$

6. (c)

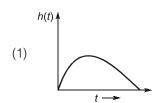
T.F. =
$$\frac{1}{\left[s - (\sigma + j\omega)\right]\left[s - (\sigma - j\omega)\right]}$$
$$= \frac{1}{\left[(s - \sigma) - j\omega)\right]\left[(s - \sigma) + j\omega\right]}$$
$$= \frac{1}{\left[(s - \sigma)^2 - (j\omega)^2\right]} = \frac{1}{\left[(s - \sigma)^2 + \omega^2\right]}$$

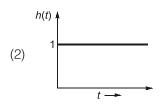
For impulse response, taking its inverse Laplace transformation we get,

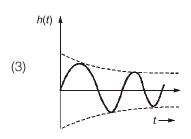
 $c(t) = e^{\sigma t} \sin \omega t$. So, option (c) is correct.

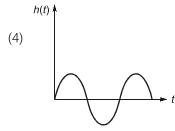
7. (b)

If the impulse response decays to zero as time approaches infinity, the system is stable.









$$\frac{C(s)}{R(s)} = \frac{s+1}{s+2}$$

$$C(s) = R(s) \cdot \frac{s+1}{s+2}$$

$$= \frac{1}{s^2} \cdot \frac{s+1}{s+2} = \frac{1}{s^2} \left(1 - \frac{1}{s+2} \right)$$

$$= \frac{1}{s^2} - \frac{1}{s^2(s+2)}$$

$$\frac{1}{s^2} \cdot \left(\frac{s+1}{s+2}\right) = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s+2}$$

$$s+1 = As(s+2) + B(s+2) + Cs^2$$

$$= As^2 + 2As + Bs + 2B + Cs^2$$

$$A + C = 0$$
, $2A + B = 1$ and $2B = 1$.

$$A = \frac{1}{2}, \quad B = \frac{1}{4}, \quad C = -\frac{1}{4}$$

$$\therefore \frac{C(s)}{R(s)} = \frac{1}{4s} + \frac{1}{2s^2} + \left(-\frac{1}{4}\right) \frac{1}{s+2}$$
$$= \frac{1}{4}u(t) + \frac{1}{2}tu(t) - \frac{1}{4}e^{-2t}u(t)$$

9. (d)

- (i) Transfer function can be obtained from signal flow graph of the system.
- (ii) Transfer function typically characterizes to LTI systems.
- (iii) Transfer function gives the ratio of output to input in s-domain of system.

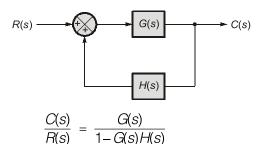
$$TF = \frac{L[Output]}{L[Input]} \bigg|_{Initial \text{ conditions } = 0}$$

11. (d)

2023

BOOK PACKAGE

Block diagram of regenerating feedback system



12.(b)

Closed loop control system with negative feedback will have

- Less gain
- More accuracy
- More bandwidth hence more speed

14. (d)

Let R(s) is the input Laplace transform of given differential equation is

$$s^{2}Y(s) + 6sY(s) + 9Y(s) = R(s)$$

$$(s^{2} + 6s + 9) Y(s) = R(s)$$

$$TF = \frac{Y(s)}{R(s)} = \frac{1}{(s+3)^{2}}$$

$$IR = L^{-1} \left[\frac{1}{(s+3)^{2}} \right] = te^{-3t}u(t)$$

15.(c)

Given that,

$$r(t) = 1 - e^{-t},$$

$$c(t) = 1 - e^{-2t}$$

$$R(s) = \frac{1}{s} - \frac{1}{s+1} = \frac{1}{s(s+1)}$$

$$C(s) = \frac{1}{s} - \frac{1}{(s+2)} = \frac{2}{s(s+2)}$$

$$TF = \frac{C(s)}{R(s)} = \frac{2s(s+1)}{s(s+2)} = \frac{2(s+1)}{s+2}$$