Computer Science &

Information Technology

Algorithms

Comprehensive Theory

with Solved Examples and Practice Questions

N=

MADE ERSY

N=

MRADE ERSY
Publications

MADE EASY Publications Pvt. Ltd.

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016
E-mail: infomep@madeeasy.in
Contact: 011-45124660, 8860378007

Visit us at: www.madeeasypublications.org

Algorithms

© Copyright by MADE EASY Publications Pvt. Ltd.

Allrights are reserved. No part of this publication may be reproduced, stored in or introduced
into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photo-copying, recording or otherwise), without the prior written permission of the above
mentioned publisher of this book.

First Edition: 2015
Second Edition : 2016
Third Edition : 2017
Fourth Edition : 2018
Fifth Edition : 2019
Sixth Edition : 2020
Seventh Edition : 2021
Eighth Edition : 2022

© Allrights reserved by MADE EASY PUBLICATIONS Pvt. Ltd. No part of this book may be reproduced or utilized in any form without
the written permission from the publisher.

Contents

Algorithms

Chapter 1

Asymptotic Analysis of Algorithms........... 3
1.1 Need for Performance Analysis.......cncecevnnnns 3
1.2 Worst, Average and Best Cases..........ccowemmrreermeeeennns 4
1.3 Asymptotic Notations 5
1.4 Analysis of Loops 9
1.5 Comparisons of Functions 19
1.6 Asymptotic Behaviour of Polynomials................ 20
Student Assignments 23

Chapter 2

Recurrence Relations...........ccccceeeneeceneee. 31
2.1 Introduction 31
2.2 Substitution Method 32
2.3 Master Theorem 43
Student Assignments 46

Chapter 3

Divide and Conquer........ . .55
3.1 Introduction 55
3.2 Quick Sort 55
3.3 Strassen’s Matrix Multiplicationccceeveeeeesereenne 60
34 Merge Sort 63
3.5 Insertion Sort 66
3.6 Counting Inversions 67
3.7 Binary Search 69
3.8 Bubble Sort 72
3.9 Finding Min and Max 73
3.10 Power of An Element 76
Student Assignments 78

(iii)

Chapter 4

Greedy Techniques..............cccvvrrvrererennnn. 20

4.1 Introduction 90

4.2 Basic Examples of Greedy Techniques..... .91

4.3 Greedy Technique Formalization. .92

44 Knapsack (Fractional) Problemconircnecrns 93

4.5 Representations of Graphs 96

4.6 Minimum Cost Spanning Tree (MCST) Problem....98

4.7 Single Source Shortest Path Problem (SSSPP)..... 107

4.8 Huffman Coding 117

Student Assignments 121
Chapter 5

Graph Based Algorithms..................... 139

5.1 Introduction 139

5.2 Graph Searching 139

5.3 Directed Acyclic Graphs (DAG)ccoecenmeeeuneceunnens 151

5.4 Topological Sorting 152

Student Assignments 155
Chapter 6

Dynamic Programingccceeceeeeeneesees 163

6.1 Introduction 163

6.2 Fibonacci Numbers 163

6.3 All-Pairs Shortest Paths Problem.........cccccccenueees 166

6.4 Matrix Chain Multiplication.........oeceeeenecernees 170

6.5 The 0/1 Knapsack Problem.........onrennens 183

6.6 Multistage Graph 187

6.7 Traveling-Salesman Problem.........cnrenerenens 189

Student Assignments 192

EEEE

Algorithms

Goal of the Subject

This course provides an introduction to mathematical modeling of computational problems.
It covers the common algorithms, algorithmic paradigms, and data structures used to
solve these problems. The course emphasizes the relationship between algorithms and
programming, and introduces basic performance measures and analysis techniques for
these problems.

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

Algorithms

INTRODUCTION

In this book we tried to present the algorithms in a most simplified way. Each topic required for GATE is
crisply covered with illustrative examples and each chapter is provided with Student Assignment at the end of
each chapter so that the students get the thorough revision of the topics that he/she had studied. This subject is
carefully divided into six chapters as described below:

Chapter 1: Asymptotic Analysis of Algorithms: In this chapter we discuss the asymptotic notations to represent
the average, worst and best cases and we also learn how to identify time complexity of given algorithm.

Chapter 2: Recurrence Relations: In this chapter we study the three methods to study solve recurrence
relations. The three methods are substitution method, master theorem and recursion tree method.

Chapter 3: Divide Conquer: In this chapter we discuss the various algorithms that can be implemented using
divide and conquer paradigm namely merge and quick sort, Strassen’s matrix multiplications. We also discuss
the other sorting techniques.

Chapter 4: Greedy Algorithms: In this chapter we discuss the graph representations, algorithms' that require
local optimizations at each step. Those algorithms include job scheduling, fractional Knapsack, Prim’s and
Kruskal’s algorithms for MST’s and other algorithms for shortest paths.

Chapter 5: Graph based Algorithms: In this chapter we discuss the BFS and DFS traversals. We also discuss
the topological sorting algorithm.

Chapter 6: Dynamic Programming: In this chapter we discuss the algorithms for which greedy fails to
give correct solution. We will discuss matrix chain multiplication, Floyd Warshall's algorithm,
0/1 Knapsack, longest common sequences and other algorithms.

CHAPTER

Asymptotic Analysis of
Algorithms

1.1 Need for Performance Analysis

There are many important things that should be taken care of, like user friendliness, modularity, security,
maintainability, etc. Why to worry about performance?

The answer to this is simple — we can have all the above things only if we have performance.

Goal: To write an algorithm which takes minimum time irrespective of the machine whether it is
supercomputer or normal desktop.

Choosing the Best Algorithm

One naive way of doing this is — implement both the algorithms and run the two programs on your
computer for different inputs and see which one takes less time. There are many problems with this approach for
analysis of algorithms.

1. It might be possible that for some inputs, first algorithm performs better than the second. And for

some inputs second performs better.

2. Itmight also be possible that for some inputs, first algorithm perform better on one machine and the

second works better on other machine for some other inputs.

ASYMPTOTIC ANALYSIS is the big idea that handles above issues in analyzing algorithms. In Asymptotic
Analysis, we evaluate the performance of an algorithm in terms of input size (we don’t measure the actual running
time). We calculate, how does the time (or space) taken by an algorithm increases with the input size.

For example, let us consider the search problem (searching a given item) in a sorted array. One way to
searchis Linear Search (order of growth is linear) and other way is Binary Search (order of growth is logarithmic).
To understand how Asymptotic Analysis solves the above mentioned problems in analyzing algorithms, let us
say we run the Linear Search on a fast computer and Binary Search on a slow computer. For small values of input
array size n, the fast computer may take less time. But, after certain value of input array size, the Binary Search
will definitely start taking less time compared to the Linear Search even though the Binary Search is being run on
a slow machine. The reason is the order of growth of Binary Search with respect to input size is logarithmic while
the order of growth of Linear Search is linear. So the machine dependent constants can always be ignored after
certain values of input size.

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

Computer Science & POSTAL
4 | Information Technology 2023 MBDE ERSYH

Asymptotic Analysis is not perfect, but that’s the best way available for analyzing algorithms. For example,
say there are two sorting algorithms that take 1000 nlog nand 2 nlog ntime respectively on a machine. Both of
these algorithms are asymptotically same (order of growth is nlog n). So, With Asymptotic Analysis, we can'’t
judge which one is better as we ignore constants in Asymptotic Analysis. Also, in asymptotic analysis, we
always talk about input sizes larger than a constant value. It might be possible that those large inputs are never
given to your software and an algorithm which is asymptotically slower always performs better for your particular
situation. So, you may end up choosing an algorithm that is asymptotically slower but faster for your software.

Types of Asymptotic analysis:

1. Apriori analysis of algorithm. 2. Apostiari analysis of algorithms.

Apriori analysis Apostiari analysis
1. It means we do analysis (space and|1. It means we do analysis of algorithm
time) of an algorithm prior to running it only after running it on system.
on specific system.
2. It directly depends on system and
2. Itdoes notdepends on system. changes from system to system
3. Itprovides approximate answer. 3. ltgives exactanswer.

1.2 Worst, Average and Best Cases

We can have three cases to analyze an algorithm:
1. WorstCase 2. AverageCase 3. BestCase

Let us consider the following implementation of Linear Search.

#include <stdio.h>
// Linearly search x in arr []. If x is present then return the index,
// otherwise return -1
int search(int arr[], int n, int x)
{
int 1i;
for (i=0; i<n; i++)
{
if (arr[i] == x)
return i;
}
return -1;
}
/* Driver program to test above functions*/
int main()

{

int arr([] = {1, 10, 30, 15};

int x = 30;

int n = sizeof(arr)/sizeof (arr[0]);

printf ("%d is present at index %d", x, search(arr, n, X));
getchar () ;

return 0;

(@Y Theory with Solved Examples MADE ERSY www.madeeasypublications.org)

POSTAL Algorithms
MRDE ERSY 2023 Asymptotic Analysis of Algorithms

1.2.1 Worst Case Analysis
e In worst case analysis, we shall usually concentrate on finding only the worst-case running time,
that is, the longest running time for any input of size n.
e The worst case analysis is an upper bound on the running time for any input. Knowing it gives us a
guarantee that the algorithm will never take any longer.
Example: In the program given in section 1.2. That is for linear search, the worst case happens when
the element to be searched is not present in the array (or) it is the last element, the search function compares it
with all the elements of arr[] one by one. Therefore the worst case time complexity of linear search would be 6(n).

1.2.2 Average Case Analysis

e |n average case analysis, we take all possible inputs and calculate computing time for all of the

inputs.

e Considering all the cases, calculate the sum, and divide the sum by total number of inputs.

Example: For the linear search problem, let us assume that all cases are uniformly distributed (including
the case of X not being present in array).

Considering all possible inputs:

ie. when element found at 15! position — 6(1)

when element found at 2" position — 6(2)

when element found at n' position — 6(n)

Sum = i 0(i)
i=1

Average case time = £ = =

1.2.3 Best Case Analysis
In the best case analysis, we calculate lower bound on running time of an algorithm. We must know the
case that causes minimum number of operations to be executed. In the linear search problem, the best case
occurs when x is present at the first location. The number of operations in the best case is constant (not dependent
on n). So time complexity in the best case would be ©(1).
e Most of the times, we do worst case analysis to analyze algorithms. In the worst analysis, we guarantee
an upper bound on the running time of an algorithm which is good information.
e The average case analysis is not easy to do in most of the practical cases and itis rarely done. In the
average case analysis, we must know (or predict) the mathematical distribution of all possible inputs.
e The Best Case analysis is bogus. Guaranteeing a lower bound on an algorithm doesn’t provide any
information as in the worst case, an algorithm may take years to run.

1.3 Asymptotic Notations
Let fbe a non negative function. Then we can define the three most common asymptotic bounds as
follows.

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

Computer Science & POSTAL
6 | InformationTechnology 2023 MBDE ERSYH

1.3.1 Big-Oh(O)
We say that f(n) is Big-O of g(n), written as f(n) = O(g(n)), iff there are positive constants ¢ and n, such
that
0<f(n)<c-g(n)forall nzn,
If f(n) = O(g(n)), we say that g(n) is an upper bound on f(n).

Example-1.1 Let us consider a given function:

f(n)=4-nm+10n% +5n + 8
g(n) = nd
Checking whether f(n) = O(g(n)) or not?

Solution:

For above condition to be true
0<fin)<c-g(n)

4m + 10 +5n+8<c-nr?
whenc=5andn>4

f(n) is always lesser than g(n)
Hence above statement is true.

f(n)

=

cg (n

My f(n)= O (g(n)) Ny F(n) =2 (g(n)

1.3.2 Big-Omega (Q)
We say that f(n) is Big-Omega of g(n), written as f(n) = Q(g(n)), iff there are positive constants ¢ and n,
such that
0<c-g(n) <f(n)forall nzn,
If f(n) = Q(g(n)), we say that g(n) is a lower bound on f(n).

Example-1.2 Let us consider a given function:

f(ny=3n+2

g(n)=n
Checking whether f(n) = Q(g(n)) or not?

Solution:

For above condition to be true
0<c-g(n<f(n)
c-n<3n+2

(@Y Theory with Solved Examples MADE ERSY www.madeeasypublications.org)

POSTAL Algorithms
MRDE ERSY 2023 Asymptotic Analysis of Algorithms

whenc=1and n>1
g(n) is always lesser than f(n)
Hence above statement is true.

1.3.3 Big-Theta (©)

We say that f(n) is Big-Theta of g(n), written as f(n) = ©(g(n)), iff there are positive constants ¢,, ¢, and
ny such that

0<c,-g(n)<fn)<c,-g(n) forallnzn,

Equivalently, f(n) = ©(g(n)) if and only if f(n) = O(g(n)) and f(n) = Q(g(n)). If f(n) = © (g(n)), we say that
g(n) is a tight bound on f(n).

Example-1.3 Consider a given function:

f(n) =3n%2+6n+ 4
g(n) = n?
Checking whether f(n) = 6(g(n)) or not?

Solution:

For above condition to be true, fand g must satisfy two conditions:
(i) 0<f(n)<c,-g(n)

(i) 0<cy-g(n<f(n)

Let's see whether there exists some ¢, and ¢, or not.

(i) 3n?+6n+4<c, n?
when c,=4,nz23
Above statement is true.
= F(n) = O(g(n))
(ii) c,-n><3n?+6n+4
when c,=2,nz1
Above statement is true.
= F(n) = Q(g(n))
Hence, as above statement says F(n) = 6(g(n)) if and only if F(n) = O(g(n)) and F(n) = Q(g(n)).
c,g (n)
f(n)
49 (n)

T =0 (gm)

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

Computer Science & POSTAL
8 | Information Technology 2023 MBDE ERSYH

NOTE: Sometimes the notation f(n) < O(g(n)) is used instead of f(n) = O(g(n)) (similar for Q and ©). These
mean essentially the same thing, and the use of either is generally personal preference.

1.3.4 Small-Oh (o) Notation
The definitions of big-oh notation and small-oh notation are similar except one minor difference.

Big-oh Small-oh
If f(n) = o(g(n)) If f(n) = o(g(n))
The bound, The bound,
osf(n)<c-(g(n)) osf(n)<c-(g(n))
holds for some holds for all
constant ¢ >0 and all n >n, constant ¢ > 0 and all n > n,
Ex. 2n?=o0(n?) Ex. 2n?=o0(n?)
= 2m<c-r? 2n <c-r?
forc=3 forc=3,4, ...
above condition true. above condition is true but not
for ¢ =1 hence,
2% = o(n?)
Big-oh notation is used to denote an Small-oh notation is used to denote an
upper bound. upper bound that is not asymptotically
Ex. (i) 2n=o0o(n) tight.
(i) 3n?=o(n?) Ex. (i) 2n=o(n?
(i) 3n%=0(2")

The asymptotic upper bound provided by o-notation may not be asymptotically tight e.g. 2n° = O(n?) is
asymptotically tight but 2n = O(n?) is not.
Hence we use o-notiation to devote an upper bound that is not asymptotically tight.
o(g(n)) = {f(n)}. for every positive constant ¢ > 0
there exist a constant n, > 0 such that
0<f(n)<cg(n)forallnzn,
eg. 2n = {f(n)} but 22 # o(rP)

1.3.5 Small-Omega (w) Notation
w-notation is used to denote a lower bound that is not asymptotically tight.
o(g(n)) = {f(n)}. for every positive constant n, > 0
there exist a constant n, > 0 such that
0<cg(n)<f(n)forallnzn,
f(n)ew (g(n)) if and only if g(n) e o ((n))

p) P

n n
eg. — = o(n) but — #w(n?
9 (n) 5 (n°)

(@Y Theory with Solved Examples MADE ERSY www.madeeasypublications.org)

MEDE ERSY

Q1

Q.2

Q.3

Q.4

Q.5

Q.6

Q.7

| '

Student's
Assignments

Which one of the following is true?
1. an=o0(rP)a=0

an°=0(n?)a>0
anzo(n?)a>0

men

Only 1 and 2 are correct
Only 1is correct

1 and 3 are correct only
All are correct

NG

—~ ~ —~
o
~ —

Which of the following statements is true?

- L - R
S1: En =m(n) S2: En =w(n°)
(a) S1iscorrect
(b) S2is correct
(c) S1and S2 both are correct
(

=

d) None of the above

fin) = 3n® + 4n + 2. Which will be the exact
value for f(n)

(@) ©(m) (b) o(rP)

(c) O(rP)

f(n) = O(g(n)) if and only if

(@ g(n)=0(f(n)) (b) g(n) = o(f(n))
(c) g(n) =Q(f(n) (d) None of these
f(n) = o(g(n)) if and only if

(@ g(n)=Q(f(n))

(b) g(n) = o(f(n))

(€) g(n)=Q(f(n)) and g(n) = o(f(n))

(d) None of these

Which of the fallowing is not correct?
(@) f(n)=0(f(n))

(b) c*f(n) = O(f(n)) for a constant C
(©) (f(n) + g(n) = o(g(n) + (n))

(d) None of the above

f(n)=©(g(n)is

(@ 0<C,g(n) <fin)<C,g(n) Vnz=n,where C,,
C,, n,are + integer

(b) 0<C,g(n) <f(n)Vnz=n,where C,, C,, n,are
+ integer

3

Algorithms
Asymptotic Analysis of Algorithms

(c) 0<f(n)<Cg(n)Vnzn,where C, n,are +
integer
(d) None of the above

Q.8 1(n)=0(g(n))implies

(@ 0<C,g(n) <f(n)VYnzn, where C,, n,are +
integer

(b) 0<C,f(n)< C,g(n) Vnzn,where C,, C,, n,
are + integer

(c) O<f(n)<Cg(n) Vnzn,where C, n are +
integer

(d) 0<C,g(n)<C,fn)VYnzn,where C, C,, n,
are + integer

Q.9 f(n)=0(g(n))implies
a) f(n)=0(g(n))only
b) f(n)=Q(g(n))only
c) f(n)=0(g(n))and f(n) = €a(g(n))
d) None of the above

(
(
(
(

Q.10 f(n) = o(g(n)) implies
(@) 0<f(n)< Cg(n)such that there exists some
positive constant Cand n, > Vnzn,

(b) 0<An)< Cg(n)forevery +ve constant C >
0 there exists n, > 0, Vn=n,

(c) 0<C,f(n)<C,g(n) Vnzn,suchthat C,, C,
and n, are +ve constants

(d) 0<f(n)< Cg(n)forsome +veconstant C >
03n,>0,Vnzn,

Q.11 void x (int A[]), int n)
{ inti,
for (i=0;i<n;i++)
{ Jj=n-1
while (j > i)
{
swap (A[j], Alj-1]);
=

}

What will be time complexity of the above
algorithm if swap function takes constant time?

(a) O(n) (b) O(r?)
() O(nlog,n) (d) o)

(www.madeeasypublications.org

MRDE ERSYH

Theory with Solved Examples

Computer Science &
24 | Information Technology

Q.12 Which of the following statements are True?
(@) 100 nlogn = O(nlogn/100)

(b) flogn = O(loglogn)

(c) If0<x<ythen n*=0O)

(d) 27#0(n°) where cis aconstantand ¢ >0

Q.13 Which of the following statements (k, m are
constants) are True?
@ (n+K)7=0(nm)

) 22" = 02"

(b) on+ 1 O(2n)
(d) f(n)=0(f(n)*)

Q.14 Which of the following statements are True?
@ r?. 282" = g(n°)

4" n
®)§=®@)
(C) 2|ngf7 — ®(n2)

(d) if f(n) = O(g(n)) then 2" = O(29(M)

Q.15 Consider f(n), g(n) and h(n) be function defined
as follows:

f(n) =Q(n%)
a(n) =0o(n°)
h(n) = ©(n°)
Which of the following represents correct
asymptotic solution for f(n) + [g(n) x h(n)]?
(@) Q) (b) O(n)
(c) o) (d) O(n°)

Q.16 Consider the following C-function:
int Rec (int n)
{
inti, j, k,p, g=0;
for(i=n;i>1;i/2){
p=0;
for(j=1;j<n; j++)
p=p+1;
for(k=1; k< p, k=kx3)
g++;
Jreturn g
}
Then time complexity of Rec in term of © notation
is
(@ ©(n)
(c) ©(nlog n)

(b) ©(n?)
(d) ©(nloglog n)

3

MEBDE ERSY

Q.17 Consider following functions:
f(n) = (logn)™"
gln)=2"
h(n)=¢"/n
Which of the following is true?
(@) f(n)=0(h(n) (b) f(n)=0(n(n))
() g(n)=Q(f(n) (d) None of these

Q.18 Consider the following C function:
void dosomething (int n)
{
int m, j, k;
for (j=0;j< 200; j++)
{
for (k=0; k< n; k++)
{
for (m=0; m<j, m++)
printf(“%d”, i + my;

}

What is the time complexity of the above function?
(@ O(rr) (b) O(nlogn)
(c) O(n) (d) O(r*logn)

Q.19 Let g(n) = Q(n), f(n) = O(n) and h(n) = 6(n) then
what is the time complexity of [g(n) f(n) + h(n)]

(@ O(n) (b) 6(n)
) Q(n) (d) e(r?)

Q.20 Consider the following functions:
119Y
fo=n* f,=4" f,=n""0R7 f = | —
1 2 3 4 (37)
Which of the following is correct order of
increasing growth rate”?

(a) f1r fgr fg! f4 (b) f3’ fi’ f4’ f2
(C) fgr f1r fg! f4 (d) fw’ f3’ f4’ f2

Q.21 Consider the following program segments:
main ()
{
inti=0, m=0;

for(i=1;i<n;i++){

for (j=1;j<i*i j++){

if (j% i) ==0)
for (k= 1; k< j, k++) {

(@Y Theory with Solved Examples

MERDE ERSY

www.madeeasypublications.org)

Algorithms

MEDE ERSY Asymptotic Analysis of Algorithms 25

3

m=m+1;} 3. (a)
} fin)=3m+4n+2
} maximum degree = 2
} = 6(n?

What is the time complexity of above program? Note: option (c) and (d) are also possible but

(@ O(r?logn) (b) O(rP) they are not exact.
(¢) o) (d) O(nlogn)
4. (c)
Answer Key: f(n) = O(g(n)
Take some arbitrary values in order to solve these

1. (d) 2. (a) 3. (@) 4, (c) 5. (c) type of questions.
6. () 7. (a) 8. (0) 9. () 10. (b) As given, f(n) = O(g(n))
1. (b) 12 (¢, d)13. (a,b) 14. (a,b) 15. (a) = f(n) < g(n)

-

_ _ N2
16. (0 17.(b) 18.() 19.(0) 20. (b) Let (n) = ”fnoczg(”) =n

(@) g(n) = O(f(n)) = n? or 2 < nnot true
21. (9) (b) g(n) = (f(n)) — g(n) > f(n) = P> n
I True (only for assumed value).
\ '» Student's
Assignments

But it become false when both fand gare n.
(c) g(n) =Q(f(n)) — g(n) = f(n)
1. (d) Same thing written as given in question.
1. an=0(n?),a=0 5. (c)
o<an< c- n®forall value of ¢ this condition

is true. Hence 1 is correct.

Explanations

f(n) = o(g(n))
= f(n) is strictly lesser than g(n)

2. an? = 0(r?) Thus, f(n) < g(n)
O < an?<c¢- n?when ¢ = athis condition is For (c). a(n) = Q(f(n))
true. Hence, 2 is correct. = a(n) = f(n)
3. an?#o(m) Satisfied by given equation.
for this statement to be false o < an? < ¢ - n? = a(n) = (f(n))
must be true = g(n) > f(n) this is also satisfied
Since above condition needs to be true for all ¢ 6. (c)
thus if we could prove for some c¢ that violates (a) f(n) = O(f(n)) by reflexive property.

above condition. Whole option becomes true.
O<an? < c- rPisnottrue when ¢ < athus an?#
o(n?)is true.

(a)
S1: c-%n2 > n for every ¢ > 0 which can be
seen easily.

S2: False since c-%n2 >n° is false when

¢ = 2 hence for every cit is not true thus,
false.

(b)c * f(n) = O(f(n)) since constant does not
matter in case of asymptotic analysis.
() (f(n) + g(n)) = o(g(n) + f(n))
let fin) = r?
g(n) =n
(" +n) = o(n° + n)
n? = o(n?) not true since tightest bound not
allowed.

(c)

Go Through the Topic 6 notation.

F(n) = 6(g(n)) if and only if f(n) = O(g(n)) and
F(n) = Q(g(n) simultaneously.

(www.madeeasypublications.org

MRDE ERSYH

Theory with Solved Examples

	01. Asymptotic Analysis of Algorithms.pdf
	02. Recurrence Relations.pdf
	03. Divide and Conquer.pdf
	04. Greedy Techniques.pdf
	05. Graph Based Algorithms.pdf
	06. Dynamic Programing.pdf

