Computer Science &

Information Technology

Compiler Design

Comprehensive Theory

with Solved Examples and Practice Questions

N=

MADE ERSY

N=

MRADE ERSY
Publications

MADE EASY Publications Pvt. Ltd.

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016
E-mail: infomep@madeeasy.in
Contact: 011-45124660, 8860378007

Visit us at: www.madeeasypublications.org

Compiler Design

© Copyright by MADE EASY Publications Pvt. Ltd.

Allrights are reserved. No part of this publication may be reproduced, stored in or introduced
into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photo-copying, recording or otherwise), without the prior written permission of the above
mentioned publisher of this book.

First Edition: 2015
Second Edition : 2016
Third Edition : 2017
Fourth Edition : 2018
Fifth Edition : 2019
Sixth Edition : 2020
Seventh Edition : 2021
Eighth Edition : 2022

© Allrights reserved by MADE EASY PUBLICATIONS Pvt. Ltd. No part of this book may be reproduced or utilized in any form without
the written permission from the publisher.

Contents

Compiler Design

Chapter 1 4.3 Construction of SYNtax TrEESmececeseereens 91
Introduction to COmpilereeveueuenenene 2 44 Bottom-up Evaluation of S-Attributed
Definitions 93
11 Compiler 2 4.5 L-Attributed Definitions 94
12 Compiler Stages 3 46 Bottom-up Evaluation of Inherited Attributes...95
1.3 Grouping of Phases 9 4.7 Intermediate Code Generation...............ue. 96
1.4 Passesina Compiler 9 4.8 Dependency Graph Generation using Semantic
Student Assignments 10 Rules (SDT) 98
4.9 Syntax-Directed Translation for Intermediate
Chapter 2 Code Generation 100
Lexical Analysis...........ccccouvenrerrinneensensisenns 16 Student Assignments 101
2.1 Introduction 16
2.2 Tokens, Patterns and LeXemes..........ccccoeeeerveervrnrennnne 16 Chapter 5
2.3 Recognition of Tokens 17 Intermediate Code Generation...........114
24 Attributes for Tokens 19 5.1 Introduction 114
2.5 Lexical Errors 20 5.2 Intermediate Representations ... 114
Student Assignments 24 5.3 Basic Blocks and Flow Graphs ... 123
54 Peephole Optimization 134
Chapter 3 Student Assignments 137
Syntax Analysis (Parser)ccocoeeueeunnee. 29
3.1 Introduction 29 chapter 6
32 Prerequisites 30 Run-Time Environmentcceceeeveeneea 143
3:3 Top-Down Parsing 3 6.1 Introduction 143
34 L) Parsing 36 6.2 Storage Organization 144
3:5 Bottom-Up Parsing “ 6.3 Stack Allocation Space 146
3.6 Canonical LR Parsing (CLR) and LALR......ccccvuvunnee 54 64 Heap Allocation 149
3.7 Operator Precedence Parsing........c.crnseeesneennns 62 65 Access to Non-Local Names
3.8 Hierarchy of Grammar Classescoecrecernecennne 64 (Scope of Variables) 149
Student Assignments 66 6.6 Symbol Table Implementation.......coeeennees 153
chapter 4 6.7 Parameter Passing 154
Syntax Directed Translation ... 82 Student Assignments 157
4.1 Introduction 82
4.2 Syntax-Directed Definition 82 mEEE

(iii)

Compiler Design

GOAL OF THE SUBJECT

A compiler translates the code written in one language to some other language without changing the meaning of
the program. Itis also expected that a compiler should make the target code efficient and optimized in terms of
time and space. In order to understand or construct the compiler one must be aware of its design principles.
Compiler design principles provide an in-depth view of translation and optimization process. Compiler design
covers basic translation mechanism and error detection & recovery. It includes lexical, syntax, and semantic
analysis as front end, and code generation and optimization as back-end.

INTRODUCTION

In this book we tried to keep the syllabus of Compiler Design around the GATE syllabus. Each topic required for
GATE is crisply covered with illustrative examples and each chapter is provided with Student Assignment at the
end of each chapter so that the students get the thorough revision of the topics that he/she had studied. This
subject is carefully divided into six chapters as described below.

1. Introduction to Compiler: In this chapter we will introduce you to the Analysis-Synthesis model of compilation,
various stages of Compilation (namely: lexical, syntax, semantic, intermediate code generation, code
optimization and code optimization), grouping of various stages into analysis phase and synthesis phase,
passes in compiler and finally we discuss the bootstrapping.

2. Lexical Analysis: In this chapter we will study Tokens, lexemes and their patterns and finally we discuss
various ways of specifying tokens.

3. Syntax Analysis (Parser): In this chapter we introduce you the types of parsers, Top down parser: LL (1)
parsing, Bottom up parsers: LR parser, SLR parser, CLR parser, LALR parser and Operator precedence
parsing.

4. Syntax Directed Translation: In this chapter we will study about the Syntax directed definition, attributes
(synthesized and inherited), Construction of Syntax trees, of S-Attributed Definitions, L-Attributed
Definitions, Bottom up evaluation of inherited Attributes, dependency graph using SDT, SDT for intermediate
code generation.

5. Intermediate Code Generation: In this chapter, we will study about the code generation for program and
their various representations. We will also discuss basic blocks and flow graphs.

6. Run Time Environment: In this chapter we will study about the activation trees, control stacks, Storage
organization, storage allocation strategies, scope of variables, Symbol table representations, parameter
passing.

CHAPTER

Lexical Analysis

2.1 Introduction

As the first phase of compiler, the main task of the lexical analyzer is to read the input characters of
the source program, group them into lexemes, and produce as output a sequence of token for each
lexeme in the source program. The stream of tokens is sent to the parser for syntax analysis.
Lexical analyzer also interacts with symbol table. As when the lexical analyzer discover a lexeme
constituting an identifier, it needs to enter that lexemes into the symbol table. This interaction is
shown below:

Token

Lexical

CUEPLs et Next Token

g
Symbol table

Above interaction is implemented by having the parser call the lexical analyzer. The call, suggested
by the get Net Token command, causes the lexical analyzer to read characters from its input until it
can identify the next lexeme and produce for it the next token, which it returns to the parser.

Source language —|

Parser

NOTE

e Since, lexical analyzer directly deals with the source text, it performs stripping out comments
and white space (blank, new line, tab, and perhaps other characters that are used to
separate tokens in the input). It also keeps track of the number of new line characters
seen, so it can associate a line number with each error. If the source program uses macros,
the expansion of macros may also be performed by the lexical analyzer.

2.2 Tokens, Patterns and Lexemes

A token is a pair consisting of a token name and an optional attribute value. The token name is an
abstract symbol representing a king of lexical unit e.g. a particular keyword, or a sequence of input
characters denoting an identifier.

A patternis a description of the form that the lexemes of a token may take. In case of a key word as
a token, the pattern is just the sequence of characters that form the key word.

(@Y Theory with Solved Examples MADE ERSY www.madeeasypublications.org)

POSTAL Compiler Design
MADE ERSY 2023 LoxicalAnays | 17

e Alexeme is a sequence of characters in the source program that matches the pattern for a token
and is identified by the lexical analyzer as an instance of that token.

Example:
Token | Sample Lexemes Informal Description of Pattern

const const const

if if if

relation <, <=,=,<>,>,>= [<0r<=0r=0r<>0r>or>=

id pi, count letter followed by letters and digits

num 3.14, 286 any numeric constant

literal "Made Easy" any characters between " and" except
Identify lexeme and the respective token in the following C-statement.

printf(“Total = %d\n”, score);

Solution:

printf is lexeme corresponding to identifier score is lexeme corresponding to identifier
“Total = %d\n” is a lexeme corresponding to literal.

2.3 Recognition of Tokens
In order to understand the following example consider a grammar shown below:

stmt — if expr then stmt
|if expr then stmt else stmt
e
expr — term relop term
|term
term — id
| number
Above grammar represents branching statements.
The terminals of the grammar, which are if, then else, relop, id, and number, are the names of
tokens as far as the lexical analyser is concerned.

2.3.1 Transition Diagram for Relop

< =
Start —{ 0 m @ return (relop, LE)

>
@ return (relop, NE)
Other ¥
@ return (relop, LT)

return (relop, EQ)

return (relop, GE)

return (relop, GT)

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

Computer Science & POSTAL
18 | InformationTechnology 2023 MBDE ERSYH

Analysis:

1. We begin in state 0, the start state.

2. If we see < as the first input symbol, then among the lexemes that match the pattern for relop we
can only be looking at <, < >, or < = . We therefore goto state 1, and look at the next character.

3. [Ifitis =, then we recognize lexeme < =, enter state 2, and return the token relop with attribute LE
(less and equal).

4. lfitis >, the we recognize lexeme < >, enter state 3, and return the token relop with attribute NE (not
equal).

5. Onany other character, the lexeme < and we enter state 4 to return that information.

2.3.2 Transition Diagram for Keywords and Identifiers

Letter of digit

st rt——@ Letter _(10)-2ther turn (getToken(), installm ())
al return (getlioken(), insta
(10) ()

Analysis: Recognizing keywords and identifiers presents a problem usually, keywords like if or then are
reserved so they are not identifiers even though they look like identifiers. Thus, although we typically uses a
transition diagram like above to search for identifier lexemes, this diagram also the keywords if, then and else of
our running example.

2.3.3 Transition Diagram for Almost Every Operation

f EZ

* * /‘\ / Q
18 19 0 Start state
O/

N

Less and equal

Not equal
Less shift

Less than

Comparison equal

Assignment

Unary instruction

Add and assignment

t /‘\ ws @
14 Key word
N y

Identifier

(@Y Theory with Solved Examples MADE ERSY www.madeeasypublications.org)

POSTAL Compiler Design
MADE ERSY 2023 LoxicalAnahas | 19

A lexical analyzer uses the following patterns to recognize three tokens T,
T, and T, over the alphabet {a, b, c}.

T,:a? (b|c)*a

T,:b? (a|c)*b

T;:¢? (b|a)*c

Note that ‘x?’ means 0 or 1 occurrence of the symbol x. Note also that the analyzer outputs the
token that matches the longest possible prefix.

If the string bbaacabc is processed by the analyzer, which one of the following is the sequence
of tokens it outputs?

(a) T1T2T3 (b) T1T1T3
(c) T,T,T, (d) T,T,
Solution: (d)

Note: Conflicts resolution in lexical is decided based on longer prefix to a shorter prefix.
Input string: bbaacabc

T, matches bba

T, matches bb

T, matches bbaac

Thus, keep T, token.
Again for abc

T, does not match

T, matches ab

T, matches abc

Thus, keep T,token again.
Hence, option (d) is true.

2.4 Attributes for Tokens

When more than one pattern matches a lexeme, the lexical analyzer must provide additional information
about the particular lexeme that matched to the subsequent phases of the compiler. For example, the pattern
num matches both the strings 0 and 1. The lexical analyzer collects information about tokens into their associated
attributes. Attributes are used to distinguish different lexemes in a token. Tokens affect syntax analysis and
attributes affect semantic analysis.

Example: The tokens and associated attribute-values for the statement A = B * C + 5 are written below
as a sequence of pairs:

<id, pointer to symbol-table entry for A>

<assign_op, >

<id, pointer to symbol-table entry for B>

<mult_op, >

<id, pointer to symbol-table entry for C>

<add_op, >

<num, integer value 5 >

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

Computer Science & POSTAL
20 | Information Technology 2023 MBDE ERSYH

2.5 Lexical Errors

If none of patterns for tokens matches a prefix of the remaining input, in that case lexical analyzer gets
struck and it has to recover from this state to analyze the remaining input.

2.5.1 Recovery Methods

The simplest recovery strategy is “Panic mode error recovery”. We delete successive characters from
the remaining input until the lexical analyzer can find a well-formed token. Other error recovery methods are:
e Delete an extraneous character
Insert a missing character
Replace an incorrect character by a correct character
Transpose two adjacent characters

Example-2.3 The C statement if (++x == 5) foo(3);

Find the number of tokens?

Solution:
Lit [([++[io]=[5]) [o] ([im])[:]
There are 12 tokens.
Example-2.4 Consider the regular expression-token mapping given below:

Regex Token
ca*b 1
(alb)*b 2
c* 3

Choose the correct output when lexical analyzer scans the following input: “aaabccabbb”
(a) 232 (b) 132
(c) 231 (d) 1283

Solution: (a)
aaab — 2
cc—3
abbb —» 2

In a compiler the module that checks the token arrangement against the
source code grammar is called

(a) Lexical analyzer (b) Syntax analyzer

(c) Semantic analyzer (d) Code optimizer

Solution:(b)

e Lexical analyzer scan the source code as a stream of characters and counts it into meaning full
lexemes.

e Syntax analyzer checks the token arrangement against the source code grammar.

e Semantic analyzer check whether the parse tree constructed follows the rules of language.

e Code optimizer do code optimization of the intermediate code.

(@Y Theory with Solved Examples MADE ERSY www.madeeasypublications.org)

24

Computer Science &
Information Technology

3

MEBDE ERSY

Summary °

@,

Q.1

Q.2

Q.3

Q.4

cs

Lexical analyser also called Scanner.

When syntax analyser request for token then only lexical analyser generate token.
For an invalid token lexical analyser generate token error.

Sequence of character are called lexemes.

Set of character are called token.

e |Lexical analyser uses finite state automaton to identify different tokens.
e Strings of letters and digits which is started with letter only are called identifier.
e |exical analyser scan the lexemes always left to right.

Student's
Assignments

The number of tokens in the following C statement
printf (“i = %d, and i = %x”, i, &i);

(@ 3 (b) 26

(c) 10 (d)y 21

Consider the following statements:

S, : The set of string described by arule is called
pattern associated with token.

S,: Alexeme is a sequence of character in the

source program that is matched by pattern

for a token.

Both S, and S, are true

S, is true but S, is false

S, is true but S, is false

Both S, and S, are false

AAAA
o Q
=22

Match the following errors corresponding to their
phase:

Group A

Unbalanced parenthesis

Appearance of illegal characters
Undeclared variables

Group B
Syntactic error
Semantic error

. Lexical error

a) 1->A 2-C,
by 1B, 2—-C,
c) 1->A 2-B,
d 1-B, 2-C,

wn =

o>

3—-B
3-5A
3-C
3—-A

o~ o~~~

Find the number of tokens in the following C code
using lexical analyzer of compiler.

Q.5

Q.6

Q.7

main ()
{
/*inta=10;*
int*u *v s;
u=&s;
v =3&s;
printf (“%d%d”, s, * u);
// code ended
}

Consider the following program:

1. main ()

2. { intx=10;
3. it (x < 20;
4, else

5 y = 20;

6. 1}

When lexical analyzer scanning the above
program, how many lexical errors can be
produced?

In some programming language, an identifier is
permitted to be a letter following by any number
of letters or digits. If L and D denotes the sets of
letters and digits respectively, which of the
following expressions defines an identifier?

(@ (LuD)” (o) L(LuD)*
() (L-D) (d) L-(LD)*
Consider the following program segment:
main ()
{
int a, b;

a=5+8+;

printf(*%d”, a);

[*&b = 5; %/

}

Theory with Solved Examples

MERDE ERSY

www.madeeasypublications.org)

MEBDE ERSY

Q.8

Q.9

Q.10

Q.11

Q.12

The number of token present in the above program
segment

Which of the following is not a functionality of C

compiler?

(a) ldentifying syntax error

(b) Identifying tokens

(c) Linking

(d) None of these

Match the following groups:

List-1

Lexical analyzer

Syntax analyzer

Type checking

Intermediate code generation

List-Il

Checks the structure of the program.

Analysis of entire program by reading each

character.

3. High level language is translated to simple
machine independent language.

4. Checks the consistency requirements in a
context of the program.

Cow>»

N —

Codes:

A B CD
@1 2 4 3
)2 1 4 3
2 4 3 1
d1 4 3 2

In C programming, which of the following is not
used as a token separator during lexical analysis?
(a) White space (b) Comment

(c) Semicolon (d) None of these

Consider the C program:
main()
{

intx =10;

xX=x+Yy+ Z
}
How many tokens are identified by lexical
analyzer?

How many tokens are generated by the lexical
analyzer, if the following program has no lexical
error?

3

Q.13

Q.14

Q.15

Q.16

Q.17

Compiler Design
Lexical Analysis

25

main()

{
intx, v;
fl/*gate oat z;
x =/*exam*/10;
y=20;

}

Consider the following C program:
1. #include <stdio.h>

2. main()

3.

4, inta=2, b=3;

5. char *x;

6. x = &a = &b;

7. a= 1xab;

8. printf(“%d%d”, a, *x);

9.

If scanner reads an entire program then find the
line number in which lexical error is produced.

Find the regular expression that correctly
identifies the variable name in C program.

(@ [a-z][la-zA-Z_0-9]"

(b) [a-zA-Z_][a—-zA-Z_0-9]"

(c) [a—zA-Z_]l[a-zA-Z0-9]*

(d) [a-zA-Z][a-zA-Z_0-9]"

Which of the following is not a token in C
language?

(a) Semicolon
(c) Keyword

(o) Identifier
(d) White space

Lexical error is

(@) An error produced by lexical analyzer when
an illegal character appears.

An error produced by lexical analyzer when
a missing left parenthesis in an expression.
An error produced by scanner when both
operator and parenthesis appeared
consecutively.

All of the above

(b)

()

(d)

Match Group-l and Group-Il and select the
correct answer using the codes given below the
lists:

(www.madeeasypublications.org

Theory with Solved Examples

26

Q.18

Q.19

Q.20

cs

Computer Science &
Information Technology

Group-l
Token
Pattern
Lexeme

ow>»

Group-lI
1. Sequence of characters in the source
program that matches the pattern of a token.
2. A pair consisting of a token name and an
optional attribute value.
3. Description of the form that can be accepted.
Codes:

A B C
@1 2 3
(b) 2 3 1
() 3 1 2
(d1 3 2

Consider the following expression of C program:
abcd + (2-5+ x 6/2 - +;

How many tokens are generated by the above
expression during lexical analysis?

Consider the following program segment:

main ()
{
inta, b, c;
a = 50;
b = &a;
printf(“%d”, b);
}

The number of tokens in the above C code are

Consider the following statements:

I. The module that checks every character of
the source text is called symbol table in a
compiler.

Il. Keywords of a language are recognized
during lexical analysis.

Il. Temporary variables are one of the contents
of an activation record.

Which of the above statements is/are correct?
(@ land Ill only (b) lonly
(c) Iland Il only (d) l'and Il only

3

MEBDE ERSY

Q.21 Consider the following C program:

include <stdio.h>
main ()

{
intx =10, y = 12;

char* a;
a=8&x;
x = 1xab;

printf (“%d %d”, x, * a);
}

Which of the following type of error (earliest
phase) is identified during compilation of the
program?

(@) Lexicalerror
(c) Semantic error

(b) Syntaxerror
(d) None of these

Answer Key:
1. (c) 2. (a) 3. (a) 4, (34) 5. (0)
6. (b) 7. (24) 8. (¢ 9. (b) 10. (d)
11. (18) 12. (17) 13. (7) 14. (b) 15. (d)
16. (a) 17. (b) 18. (14) 19. (28) 20. (c)
21. (a)
\' Student's
Assignments | Explanations
1. (c)
We have,
printf ("i=%d,andi=%x" , i , & i) ,
@@ ® @®@eeO®®1

Hence there are 10 tokens.

Note: & a = 2 tokens, address operator and
identifier.

& & a = 2 tokens, logical AND and identifier.

(a)

S, : The set of string described by arule is called
pattern associated with token.

S,: Alexeme is a sequence of character in the
source program that is matched by pattern
for a token.

Both statements are true.

Theory with Solved Examples

MERDE ERSY

www.madeeasypublications.org)

MEBDE ERSY

(a)

(i) Errors like appearance of illegal characters,
unmatched string comes under lexical phase
errors.

(ii) Misspelled keywords, unbalanced
parenthesis appear during syntax analysis
phase of compiler.

(i) Incompatible type of operands, undeclared
variables detected during semantic analysis

phase.
(34)

main ()

{ {Lexical analyzer
/inta=10;* ignores comment lines}
int*u,”v,s;
u=2&s;
v=_&s

printf (“%d%d", s, * u);

/I code ended

!

(0)

At line 3: No lexical error but produces syntax

error by syntax analyzer.

Atline 5: No lexical error but produces semantic

error by semantic analyzer (declaration error).
There is no lexical error in the above program.

(b)

Identifier is permitted to be a letter followed by
any combination of letter and digits. Thus,

L (L uD)* resembles identifier.

(24)

1 23

main ()

4

{
5 6789
int a, b;
10 11 12131415 16
a=395+8+,;

17 18 19 20 212223

printf (" %d” , a) ;
[*&b=5;%

24

1
Total 24 tokens.

3

8.

10.

11.

Compiler Design
Lexical Analysis 27

(c)

Linking is done by a linker after compilation
process.

Compiler can identify token, generates compilation
error which can be lexical, syntax or semantic.

(b)

A. Lexical analyzer checks the entire source
code by reading each character.

B. Syntax analyzer receives stream of tokens
and generates parse tree with respect to
grammar so that structure is valid or not.

C. Type checking check the consistency
whether context is meaningful or not.

D. Intermediate code converts high level
language to machine language.

Hence, A52,B—>1,C—>4D—>3

(d)

White space is a token separator as:

@ = @ e @ Less than

Comment is also a token separator.
Semicolon is also a token separator trivially.

(18)
Tokens are:
main

© 0N Ok WD
)
—

—
—
I

—_
N
N + < + =

16.

17.

18. }

Hence there are 18 tokens in total.

(www.madeeasypublications.org

Theory with Solved Examples

28

12.

13.

14.

15.

16.

17.

cs

Computer Science &
Information Technology

(17)
Tokens are:
main

© 0N Ok WD
5
—

16.
17.)

Hence there are 17 tokens totally.

Note: /* ... */ is not a token since comments.

(7)

Line 7 i.e. a = 1xab;

This will generate lexical error because identifiers
cannot be start with digits.

(b)

Variable name in C program must starts with either
alphabet o underscore and followed by any
combination of alphabets, digits and underscore.
Hence, [a-zA-Z_][a-zA-Z_0-9]*.

Option (b) is true.

(d)

White space is not a taken in C language.

(a)
When an illegal character appears, lexical
analyzer generates error.

(b)

e Atokenis a pair consisting of a token name
and an optional attribute value. The token
name is an abstract symbol representing a
kind of lexical unit e.g. a particular keyword

3

18.

19.

20.

21.

MEBDE ERSY

or a sequence of input characters denoting
an identifier.

e A pattern is a description of the form that
the lexemes of a token may take. In the case
of a keyword as a token, the pattern is just
the sequence of characters that form the
keyword.

e Alexemeis asequence of characters in the
source program that matches the pattern for
a token and is identified by the lexical
analyzer as an instance of that token.

(14)

+; = 14 tokens

(28)
1 23
main ()
4
{
5 6789 10 11
inta,b, c:
12 13 14 15
a =50 ;
16 17 18 19 20
b = & a ;
21 22 23 24 25 26 27
printf (" %d" , b) ;
28
}
(c)

The module that checks every character of the
source text is called lexical analysis, keywords
recognized during lexical analysis.

Temporary variables are part of activation record.

(a)

Statement ‘7’ of the ‘C’ program which states,
1xab;

If represents lexical error.

Since, the predefined rule in ‘C’ language for an
integer is “An identifier can only have alphanumeric

X =

characters (a-z, A-Z, 0-9) and underscore ()"
The first character of an identifier can only contain

alphabet (a-z, A-Z) or underscore (_).

sHoeloNe

Theory with Solved Examples

MERDE ERSY

www.madeeasypublications.org)

	01. Introduction to Compiler.pdf
	02. Lexical Analysis.pdf
	03. Syntax Analysis (Parser).pdf
	04. Syntax Directed Transition.pdf
	05. Intermediate Code Generation.pdf
	06. Run-time Enviroment.pdf

