Computer Science &

Information Technology

Programming and
Data Structures

Comprehensive Theory

with Solved Examples and Practice Questions

N=

MADE ERSY

N=

MRADE ERSY
Publications

MADE EASY Publications Pvt. Ltd.

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016
E-mail: infomep@madeeasy.in
Contact: 011-45124660, 8860378007

Visit us at: www.madeeasypublications.org

Programming and Data Structures

© Copyright by MADE EASY Publications Pvt. Ltd.

Allrights are reserved. No part of this publication may be reproduced, stored in or introduced
into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photo-copying, recording or otherwise), without the prior written permission of the above
mentioned publisher of this book.

First Edition: 2015
Second Edition : 2016
Third Edition : 2017
Fourth Edition : 2018
Fifth Edition : 2019
Sixth Edition : 2020
Seventh Edition : 2021
Eighth Edition : 2022

© All rights reserved by MADE EASY PUBLICATIONS Pvt. Ltd. No part of this book may be reproduced or utilized in any form without
the written permission from the publisher.

Contents

Programming & Data Structures

Chapter 1

Programming Methodology................. 2
1.1 Data Segments in Memory 2
1.2 Scope of Variable 4
1.3 CVariable 6
14 Operatorsin C 9
1.5 Address arithmeticin C 16
1.6 Value of Variable in C Language.......co..couevvrmerrernens 16
1.7 Flow Control in C 17
1.8 Function 25
1.9 Recursion 31
1.10 CScope Rules 34
1.11 Storage Class 37
1.12 Pointers 45
1.13 Sequence Pointsin C 58
1.14 Declarations and Notations ..., 60
1.15 Const Qualifier 61
1.16 Stringsin C 62
Student Assignments 64
Chapter 2
Arrays..... . . .79
2.1 Definition of Array 79
2.2 Declaration of Array 79
2.3 Properties of Array 80
24 Accessing Elements of an Array.......coecennecennn. 83
Student Assignments 92
Chapter 3
Stack . . .98
3.1 Introduction 98
3.2 Operation on Stack 98
3.3 Simple Representation of a Stack........ccecceeuurne 100
3.4 ADT of Stack 100
3.5 Operations of Stack 100

3.6 Average Stack Lifetime of an Element................ 105

3.7 Applications of Stack 106

3.8 Tower of Hanoi 116

Student Assignments 119
Chapter 4

Queue.. . . 127

4.1 Introduction 127

4.2 Operations of Queue 127

4.3 Application of Queue 129

4.4 Circular Queue 129

4.5 Implement Queue using Stackscccoeeeeunecees 130

4.6 Implement Stack Using Queues......ccoomeeeuuneces 131

4.7 Average Lifetime of an Element in Queue........ 134

4.8 Types of Queue 134

4.9 Double Ended Queue (Dequeue)ceenneene 135

4.10 Priority Queue 136

Student Assignments 139
Chapter 5

Linked Lists147

5.1 Introduction 147

5.2 Linked Lists 148

5.3 Uses of Linked lists 148

5.4 Singly Linked List or One Way Chain........cc......... 148

5.5 Circular Single Linked LiSt.........coecunererneerreeserennns 157

5.6 Doubly Linked Lists or Two-way chain.............. 159

5.7 List Implementation of Queues.......ccccccouvrerrrennee 164

5.8 List Implementation of Stacks.......cc.couerveemsrrennns 165

5.9 List Implementation of Priority Queues............ 166

5.10 Other operation on Linked List.........ccooucrmrvererree 166

5.11 Polynomial Addition Using Linked List.............. 167

5.12 Polynomial Multiplication Using Linked List ... 168

(iii)

Student Assignments 170

Chapter 6

Trees
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

6.15

oo (XYY oo ----001

Introduction

Glossary

Applications of Tree

Tree Traversals for Forests

Binary Trees

Types of Binary Trees

Applications of Binary Tree..........cwnreemseeesneneens
Internal and External Nodesccouvevevenecernnns

Expression Trees

Binary Tree Representationsceeveeveeereenncs
Implicit Array Representation of Binary Trees......

Threaded Binary Trees

Representing Lists as Binary Trees..........uccunuc.

Binary Search Tree
AVL Tree (Adelson Velski Landis)cocccrveveneeenee

Student Assignments

81
181
181
182
183
184
184
186
190
192
193
194
196
196
199
208
223

(iv)

Chapter 7
Hashing Techniquescccccceeeecccnnneeees 236

7.1
7.2
7.3
74
7.5

7.6

7.7

Introduction

236

Hash Function

236

Collisions

237

Collision Resolution Techniques..............

............. 237

244

Hashing Function
Comparison of Collision Resolution

Techniques

246

Various Hash Function

246

Student Assignments

248

Programming and
Data Structures

Goal of the Subject

Computer Science is not the study of programming. Programming, however, is an important part of what
a computer scientist does. Programming is often the way that we create a representation for our solutions.
Therefore, this language representation and the process of creating it becomes a fundamental part of the
discipline.

A data structure is a specialized format for organizing and storing data. To manage the complexity of
problems and the problem-solving process, computer scientists use abstractions to allow them to focus
on the "big picture" without getting lost in the details. By creating models of the problem domain, we are
able to utilize a better and more efficient problem-solving process. The implementation of an abstract
data type, often referred to as a data structure, will require that we provide a physical view of the data
using some collection of programming constructs and primitive data types.

General data structure types include the array, the file, the record, the table, the tree, and so on. Any data
structure is designed to organize data to suit a specific purpose so that it can be accessed and worked
with in appropriate ways. In computer programming, a data structure may be selected or designed to
store data for the purpose of working on it with various algorithms.

Introduction

In this book we tried to keep the syllabus of Software Programming and Data structures around
the GATE syllabus. Each topic required for GATE is crisply covered with illustrative examples and each
chapter is provided with Student Assignment at the end of each chapter so that the students get the
thorough revision of the topics that he/she had studied. This subject is carefully divided into seven
chapters as described below.

1. Programming Methodology: In this chapter we will study about the different segments and their
organization, variables and their scope, flow of control in a program, function evaluation types,
storage classes, and pointers and finally we discuss the application of pointers.

2. Arrays: In this chapter we will study properties and application of arrays, accessing methods for
two and three dimensional arrays and finally we discuss the arrays in the form of special matrices.

3. Stack: In this chapter we will study the ADT of stack, operations on stack, applications and different
types of notations evaluated by stack and finally we discuss the tower of Hanoi (application).

4. Queue: In this chapter we will study about the Queue, operations on queue, applications and finally
we discuss different types of queues.

5. Linked Lists: In this chapter we will study types and applications of linked list, operations on linked
list, priority queue and finally we discuss implementation of stack, queue and priority queue using
lists.

6. Trees: In this chapter we introduce trees, their applications, types of trees (BST, B-tree, and AVL),
different types tree traversals and finally we discuss operations on trees.

7. Hashing Techniques: In this chapter we introduce the Hash function, collision resolution techniques
and comparisons of different collision techniques.

CHAPTER

Arrays

2.1 Definition of Array

e A collection of items having same data type stored in contiguous memory allocation.

e An array is derived data type in ¢ programming language which can store similar type of data in
continuous memory location. Data may be primitive type (int, char, float, double...), address of union,
structure, pointer, function or another array.

e Importance: Array implementation is important because:

(a) Most assembly languages have no concept of arrays.
(b) From an array, any other data structure we might want, can be built.

2.2 Declaration of Array

There are various array in which we can declare an array.
(i) Array declaration by specifying size:

Example: 1. intarr[10];

2. intn=10;
intarr[n];

(i) Array declaration by initializing elements:

Example: intarr[] = {10, 20, 30, 40}

Compiler creates an array of size 4

arr —» 10 20 30 40

0 1 2 3 — Index

(iii)y Array declaration by specifying size and initializing:
Example:intarr[7] = {1, 2, 3, 4, 5}
Compiler creates an array of size 7

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

Computer Science & POSTAL
80 | Information Technology 2023 MBDE ERSYH

armr — 1 2 3 4 5 0 0

0 1 2 3 4 5 6
Rf_J
0 since no value is given
during declaration

2.3 Properties of Array

e Each element is of the same size (char = 1 byte, integer = 2 byte or 4 word).
e Elements are stored continuously, with the first element stored at the smallest memory address.

NOTE: Thus the whole trick in assembly language is (a) To allocate correct amount of space for an array and
(b) An address tells the location of an element.

Example: int arr[5]; , char arr[5]; , float arr[5]; , long double arr[5]; ,
char * arr([5]; , int (arr[]) (); and double ** arr[5];

2.3.1 ArrayisUsefulWhen

We have to store large number of data of similar type. If we have large number of similar kind of variable
then itis very difficult to remember name of all variables and write the program. Below program without array and
its equivalent program with array is shown.

Program without Array Program with Array
#include<stdio.h> #include<stdio.h>
int main () { int main () {
int ax=1, b=2, cg=5, dff=7, int arr[]1={1,2,5,7,8,0,11,5,90};
am=8, raja=0, rani=11l, xxx=5, int 1i,avg;
yyy=90, avg; for (1=0;1<12;i++) {

avg= (axt+b+cg+dff+amtrajat+rani

avg=avg+arr[i];
+xxx+yyy) /12; d d

}
printf (“%d”,avg/12);
return 0;

printf (“%d”,avqg) ;
return 0;

2.3.2 Advantage of Using Array
1. Anarray provides single name. So it easy to remember the name of all element of an array.
2. Array name gives base address of an array. So with the help increment operator we can visit one by
one all the element of an array.
3. Array issued to implement many data structures like linked list, stack, tree etc.
4. Array allows random access to elements along with sequential access.
Example: intarr[] = {10, 20, 30}
printf(“%d”, arr[1]);
Output — 20 (print element present at index 1)

(@Y Theory with Solved Examples MADE ERSY www.madeeasypublications.org)

MEBDE ERSY

Programming and Data Structures
Arrays

81

3

2.3.3 Disadvantage of Using Array

1.

Array is of fixed size so the number of elements to be stored in array should be known in advance.
Once the size is declared, it cannot be modified.

Insertion and deletion are quite difficult in array as elements are stored in consecutive memory
locations and shifting operation is costly.

2.3.4 ArrayofPointersinC
Array whose content is address of another variable is known as array of pointers.

What will be output of following program?

Example-2.1
Code

Solution

#include<stdio.h>
int main ()

Output: 5, 10, 20, 40, 80

{

Here, arr is array of integer, arrofpointers is array of
pointers.

int arr[] = {5, 10,20, 40, 30} First for loop is used to store the address of
int i, *arrofpointers[5]; integers present in arr[] into arrofpointers| .
for (i = 0, i < 5, i++) Second for loop is used to print the value of

{ integers through arrofpointers[] array. To access

arrofpointer[i] = & arr([i]; the value from address, *’ operator is used.
}
for (1 = 0, 1 < 5; i++)
{
printf (“%d”, * arrofpointers[i]);
}
return 0;

2.3.5 ComplexArraysinC

Declaration of an array of size five which can store address of such functions whose parameter is
void data type and return type is also void data type: void (arr[5]) () ;

Declaration of an array of size five which can store address of such function which has two parameter
of int data type and return type is float data type: float (arr[5]) (int, int);

Declaration of an array of size two which can store the address of printf or scanf function:

2)

int (arr[2]) (const char*, ..

NOTE: Prototype of printf function is: int printf (const char*, ..

) 8

2.3.6 DifferentTypeofArrayinC

Array of integer: An array which can hold integer data type is known as array of integer.
Example: int arr[1;

Array of character: An array which can hold character data type is known as array of character.
Example: char ch[3];

Array of union: An array which can hold address of union data type is known as array of union.

(www.madeeasypublications.org

MADE ERSYH Theory with Solved Examples

Computer Science & POSTAL
82 | Information Technology 2023 MBDE ERSYH

What will be output of following program?

Code Solution
#include<stdio.h> Output: 80
union A{ Union is a special data type that allows to store
char p; different data types in same memory location.
float *const q; Size of union = size of largest member of union.
Y Here,
int main () { Union A {

union A arr[10];
printf (“*%d”,sizeof arr);
return O;
} }
As there is a array of union, so total size = 10 x8 =
80.

char p; 1 byte
float *const q; 8 byte

e Array of structure: An array which can hold address of structure data type is known as array of

structure.
Example-2.3 What will be output of following program?
Code Solution
#include<stdio.h> Output: made 10

typedef struct madeeasy({

Structure is a user defined data type in ¢ which
char *name;

allows us to combine data of different types

int roll; together under a single name. Size of structure
}s; = size of member, + size of member, ... + size
int main() { of member n.

s arr[2]={{"made”, 10}, {“easy”,11}}; | Here,
printf(“%s %d”,arr[0]);

struct madeeasy {
return 0;

char *name; 8 byte (pointer)
int roll; 4/12 byte
Is;

As the array is of structure as shown below:

arr made 10 easy 11

-
0 11

So, output is ‘made 10’

e Array of string: An array which can hold string data type is known as array of integer.
Example: string name[4];
e Array of array: An array which can hold address of another array is known as array of array.

e Array of address of integer: An array which can hold address integer data type is known as array
of address of integer.

2.3.7 PointertoArray

A pointer which holds base address of an array or address of any element of an array is known as pointer
to array.

(@Y Theory with Solved Examples MADE ERSY www.madeeasypublications.org)

POSTAL Programming and Data Structures
MRDE ERSY 2023 Amays | 83

What will be output of following program?

#include<stdio.h>
int main () {
int arr[5]1={100,200,300};
int *ptrl=arr;
printf (“%d”, * (ptrl+2),);
return O0;
}
Solution:
Let array arr be stored from memory location 1000.

arr 100 200 300
1000 1004 1008

ptr1is a pointer that points to arr, i.e., store address of arr.

100 200 300

ptr1 1000 1004 1008
1000

(ptr1 + 2) strips 2 elements in the given array.

100 200 300

1000 1004 1008
ptr1

1008

*(ptr1 + 2) gives the value stored at 1008, i.e., 300

2.4 Accessing Elements of an Array

In general we need to know: (a) Where the array starts (called the Base address) (b) Size of an element
in bytes (to get a byte address) and (c) What the first element is numbered (first index).

2.4.1 OneDimensional Array

Byte address of element [X] = base address + size (X-first index)

A[O, 9], base address = 1000, size of element = 2 byte. Find location of
A[5].

Solution:

1000 1002 1004 1006 1008 1010 1012 1014 1016 1018

0 1 2 3 4 5 6 7 8 9

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

Computer Science & POSTAL
84 | Information Technology 2023 MBDE ERSYH

Location(A[5]) = 1000 + (5-0) x 2
Base Number of element Size of
address to be shipped each element
to reach index 5
N _

Total memory to be crossed
or skipped to reach given index

= 1000 + 10 =1010

A[-5 ... + 5], Base address (BA) = 999, Size of element = 100 bytes.
Find the location of A[-1], A[+5]?

Solution:
L(A[-1]) = 999 + [(-1) - (-5)] x 100
= 999 + 100 x 4 = 1399
L(A[B]) = 999 + [6-(-5)] x 100

999 + 10 x 100 = 1999

NOTE: Total number of element = Last Index — First Index + 1

2.4.2 Two-Dimensional Arrays
How to map a 2-D array into a 1-D array memory:
Terminology rx c array, where r = rows and ¢ = columns
element [y, x], where y is row number and x is column number.
Example: A[0 ... 3,0 ... 1]i.e. A[4] [2]

a a .

0 00 01 Column index

1 ayg EW

2 ax ay; x| xiselementay,
3 as, asy

T— Row index

Mapping this 4 x 2 array into memory.
There are two possibilities:
e Row Major Ordering: Rows are all together.

R, R, R, R,

A 1000 1002 1004 1006 1008 1010 1012 1014

ago ap1 a4q9 aq a0 a1 a3 a3q

0 1 2 3 4 5 6 7

Suppose array A[lb; ... ub,] [lg, ... ub,] has base address ‘BA', ‘S’ is size of each element array is
stored in row major order, then location of some element A[{][/] is:
location (A[][/]) = BA + [(i —Ib,) x number of columns + (j-Ib,)]) * S

(@Y Theory with Solved Examples MADE ERSY www.madeeasypublications.org)

MEDE ERSY

POSTAL 2023 Programming and Data Structures
BOOK PACKAGE Arrays | 91

2.4.6 Strictly LowerTriangular Matrix
A lower triangular matrix having as along with the diagonal as well as the upper portion i.e., a matrix
A=la /.] such that a ;= Ofori>j

0 0 ... 0

0O --- 0

Written explicitly L = aj” S
8y Gp 0

2.4.7 Strictly UpperTriangular Matrix
A upper triangular matrix as along the diagonal as well as the upper portion i.e., a matrix A = [aiy j] such

thatal.yj:OforiSj

0 812 an

) o 0 82,7
Written explicit U = . .
0O O 0

Summary °

@ .

Array is a collection of homogeneous elements stored in contiguous memory location.
Properties: Static in nature, Compile time early binding and user friendly.
1-D Array: Let ‘A’ be an array of n elements. Address of an element A[i]:
Base(A) + (i — start index) x size of element.
2-D Array: Let Alm][n] be a 2-D array with m rows and n columns.
Address of an element A[][] in Row Major order:
Base (A) + (j— start index) x size of element + (i — start index) x size of element x n
Address of an element A[i][/] in Column Major order:
Base (A) + (i — start index) x size of element + (j— start index) x m x size of element.
Insertion:
[best case] At end takes constant time i.e. Q(1)
[worst case] At beginning takes O(n) time
[Average case] In middle takes 6(n) time
Deletion:
[best case] At end takes constant time i.e. Q(1)
[worst case] At beginning takes O(n) time
[Average case] In middle takes 6(n) time
Lower Triangular [\],.,:
" -n_nn+

(i) Size = n+T 5

i(i —1)

(i) Row Major Order (RMO): (j—1)+ -

(iii) Column Major Order (CMO): a[i][/] = (i—j)+[(j—1)n—%]

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

92

’

Q.1

Q.2

Q.3

Q.4

cs

Computer Science &
Information Technology

e Upper Triangular [],.,:

() Size= 20*D

(i) Row Major Order (RMO): a[i][/] = (/—i)+[(i—1)

3

MEBDE ERSYH

n_(i—1)(i—2)]
2

. (i1
(i) Column Major Order (CMO): a[i][]] = [(1—1)+%]
e Strictly lower triangular [I,
() sze=T 5 n
(i) Row Major Order (RMO): a[i][] = (/—1)+W
(iii) Column Major Order (CMO): a[i][/] = (i_1)+(j_1)2ﬁ
Q.5 Main()
Student's {
Assignment o o3 4
Advantage of array is inta[3][4]=15 6 7 8
(a) Linearaccess (b) Random access 9 10 11 12
(c) Sequentialaccess (d) Allthe above orintf(“\ n% u% u% ", a[0] + 1, * (a[0] + 1),
Consider the following single dimensional array ("(a+0)+1)));
int a[5] = {10, 20, 30, 40, 50}. Array is stored)
starting from location 1000 (size of int = 2 byte)? What is output of the above program? Assume
What is location is a[4]? array begin at address 10.
(a) 1000 (b) 1008 (@) 12,2,2 (b) 10,2, 2
(¢) 1005 (d) 1002 (©) 12,2, 4 (d) 12, 4, 4
Consider the following single dimensional array Q.6 Professor Pradhumn decides to make quick sort

declaration
A[1...1000]

Base address 1000 and size of element 4. Find

the location of A[50]

(a) 1186

(c) 1096

(b) 1126
(d) 1196

Consider the 2 dimensional array. A [- 8...12,
—4...16]. Calculate the address of A[1, 3].
Assume that it is stored in a row major order.
Each element occupies 4-byte and starting
address of array 2000.
(@) 2780

(c) 2776

(b) 2784
(d) 2782

stable by changing each key A[i] in array A[1: n]
to (n*A[i]) + i — 1, so that all the new keys are
distinct (call the modified array A’[1: n] and then
sorting A’ (Assume Ais subset of integers). Then
which of the following is true”?

(a) A’ contains distinct elements and the original

keys can be restored by computing [AT[I]“

for each i.
(b) A’ contains distinct elements and the original
keys can be restored by computing L_A [i]J
n

for each i.

Theory with Solved Examples

MERDE ERSY

www.madeeasypublications.org)

MEBDE ERSY

Q.7

Q.8

Q.9

(c) A’ does not always contain distinct keys.
(d) A’ contains distinct elements but it is not
possible to restore original keys.

In a compact single dimensional array
representation for lower triangular matrices (i.e.
all the elements above the diagonal are zero of
size nx n, non-zero elements (i.e., elements of
the lower triangle) of each row are stored one
after another, starting from the first row, the index
of the (i, /)" element of the lower triangular matrix
in the new representation is

@ i+ (b) i+1-1
- i(i—1) L JG=0)
© -+ > (d) I+T
Main()
{
1 2 3 4
inta[3][4]=15 6 7 8
9 10 11 12

printf("\ n% u% u’, a +1, & a + 1);
}
What is the output of the above program?
Assume array begin at address 54572.
(a) 54572,54580 (b) 54580, 54596
(c) 54572,54596 (d) 54572,65490

Suppose we want to arrange the n numbers
stored in an array such that all negative value
occur before all positive ones, minimum number
of exchanges required in the worst case is

(@ n-1

() n+1

Q.10 Let A[1 : n] be an array such that A[i] = i. An

Q.11

algorithm randomly permutes the elements of A,
call the resulting array A’. Let X denote the
number of locations such that A’[i] = i. What is
expectation of X?

n
P b) —

(@ (0) 3

(€) n (d) 1

Consider the function given below, which should

return the index of first zero in input array of length
‘n’ if present else return —1.

3

Q.12

Q.13

Q.14

Programming and Data Structures
Arrays

93

int index of zero (int[] array, int n) {

for (inti =0; E; i++);
if (i ==n)
return—1;

returni;

}

Which of the should be place in code at El
so that code will work fine?

(@) array[i]l'!=0&&i<n

(b) array[i]l'! =0&&i<n

(c) larray[i] =0&&i<n

(d) larray[i] ==0]|n

Consider the following C code snippet:

main ()
{
int S[6] = {128, 256, 512, 1024, 2048, 4096};
int *x = (int ") (& S + 1);
printf(“%d”, x);
}
Let the size of int is 4 bytes; the array starts
from 2000 onwards. Then the o/p generated by
the above code is

Consider the integer arrayA[1 100,1 ... 100]
in which the elements are stored in Z
representation. An example of a5 x 5array in Z
representation is shown below:

1 2 3 4 5
(a1 @ a3 &y a5
&y
a33

A WON =

a2

Slast asp a3 a4 ass]
If the base address of A is starting from 1000
onwards, size of each element is 1 bytes and A
is stored in Row Major Order, then the address
corresponding to A[100] [65]is .

In a lower triangular matrices (size 15 x 15)
representation of compact single dimensional
array, non-zero elements (i.e. elements of the lower
triangle) of each row are stored one after another,
starting from the first row. Assume each integer

(www.madeeasypublications.org

Theory with Solved Examples

Computer Science &
94 | Information Technology

take 1B. The array stored in row major order

and first element of array is stored at location 1000,

then the address of element a[10] [6] is
B.

[Note: Only lower triangular elements of the

matrix are stored in contiguous array]

Q.15 Consider the following C program:

#include <stdio.h>

#include <conio.h>

int main ()

{
intarr [2][3][2] = {{{1, 2}, {3, 4}, {5, 6}}, {{7, 8},
{9, 10}, {11, 12}}}
printf(“%d %d’, a[1] - a[0], a[1][0] — a[O][Q]);
return O;

}

The output produced by above C programm is

Q.16 Consider 3 dimensional Array A[90] [30] [40]
stored in linear array in column major order. If
the base address starts at 10, The location of A
[20] [20] [30] is . (Assume the first
elementis stored at A[1][1][1] and each element
take 1 memory location)

Q.17 Consider the following C-fragment where size of
intis 1 B (Assume starting address of array is
1000)
int main ()
{
int S[6] = {10, 20, 30, 40, 50, 60};
int * Str = (int *) (&S + 1);
printf(“% d”, Str);
}

The output generated by above code is

Q.18 Consider a 2 dimensional array A[40 95, 40
..... 95] in lower triangular matrix representation.
The size of each elementin the array is 1 byte. If
the array is implemented in the memory in the
form of row major order and base address of the
array is 1000, the address of A[66] [50] will be

3

MEBDE ERSY

Q.19 The minimum size that an array may require to
store a binary tree with ‘n’ nodes is

() A9V _g) o0y
() 2"—=n+1 (d) n+1
Answer Key:

1. (b) 2. (b) 3. (d) 4, (b) 5. (a)
6. (b) 7. (o) 8. (b) 9. (d) 10. (d)
11. (b) 12, (2024) 13. (1252)14. (1061) 15. (36)
16. (23699) 17.(1006) 18. (1361) 19. (a)

ST students
Assignments | Explanations
1. (o)

An array can be accessed in random way also.

A

0 1 10 | 8 5
0 1 2 3 4
Either we can access the array sequentially using
aloop or can directly access a element using its
index.

Example: A[2] =5

Now array A looks like

A

2. (b)

Array is stored from location 1000 and size of
each element is 2 byte.

1000 1002 1004 1006 1008
10 | 20 | 30 | 40 | 50
0 1 2 3 4

a[4] = 50 is stored at location 1008.

a

3. (b)
Base address (BA) = 1000
Size(s) = 4 byte
lb = 1,ub=1000
Location (A[50]) = BA + (50-1b) x S

1000 + (50 - 1) x 4
1000 + 49 x 4 = 1196

(@Y Theory with Solved Examples

MERDE ERSY

www.madeeasypublications.org)

POSTAL Programming and Data Structures
MRDE ERSY 2023 Amays | 95

4. (b)

6. (b)

Base address = 2000 Let us solve this question with help of an example:

Size of each element(s) = 4 byte

Let array Abe 4 2 1 4

b, = -8, b, =~
b, = 12,1b,=16 Now calculating arr1ay A’ising?zn*A[j]H i-1)
Number of rows (nR) = ub, —1b, + 1 A1) = (Ax4+1-1)=16
= 12-(-8)+1=21 i
Number of columns (nC) = ub,—Ib, + 1 Al2] = (4x2+2-1)=9
A3l = (4x1+3-1)=6

Location (A[1][3]) =BA +[(i—Ib,)*nC
=2000 + [(1-(-8))* 21 + (3-(-4))]" 4
=2000+[9* 21 +7]*4

= (16)- (4§+1—21
)

“nC+(j—lb)* S Al4] = 4x4+4-1)=19

A’ contains distinct elements because the values
in A” depends on index i.
Restoring original value:

1

=2784
AT 16
5. (a) Al = —==7=4
| 1.2 3 4 Al2] = _A[2]_g_225
inta[3][4] = |5 6 7 8 no 4
9 10 11 12 To get original value, we have to floor of above
% U- it | d to print the add value.
% u - it is used to print the address.
P |2.25] = 2
a[3][4] = 0 1 2 3 A[3]
o[10 [12 [14 [16 +— Address Al3] = [n JZ[J [1.5]=1
WPl 1 | 2] 3| 4
18 | 20 | 22 | 24 Al4] 19
row 1 5 6 7 8 Al4] = { n J:{ J L475J 4
owa| 26| 28| 30 | 32
9 10 1 12 7. (C)
(i) a[0] +1 = a[0] can be written as *(a + 0) Let, n=3
So al0]+1 = *(@+0)+1 123
1 1 114 0 O
Select 0" row Skip 1 element in 212 50
that row 31 6 3
= Address of 0" row + 1 x Size of element
=10+2=12 A
) 4| 2[5|1]6]|3
(i) *(a[0]+1)= *(*(@a+0)+1)
o | 0 1 2 3 4 5
Select ~
othrow Ship 1 element Ry R, Ry
in that row
— Location (A[7][/]) = BA+[(i — 1) Natural number sum + (j— 1)] x S
Select the element — —
Firstly, 0" row selected. In that row, 1 element Number of elements to be
)])) crossed to reach j™ column
is stripped (i.e., 1) and second element is
(i-Nai-1+1) .
selected. = 0+ ————+(- N [x1
Output —» 2 2
(i) *(*(a + 0) +1) = Also outputs 2 (same as =1, 1
o) =5 +U=7)

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

	01. Programming Methodology.pdf
	02. Arrays.pdf
	03. Stack.pdf
	04. Queue.pdf
	05. Linked Lists.pdf
	06. Trees.pdf
	07. Hashing Techniques.pdf

