POSTAL Book Package

2023

ESE

Electronics Engineering

Conventional Practice Sets

Communication Systems

Content	2
Commen	u

SI.	Topic Page N	о.
1.	Theory of Random Variable and Noise	24
2.	Amplitude Modulation	12
3.	Angle Modulation	59
4.	AM Transmitters and Receivers	38
5.	Pulse Modulation	36
6.	Data Transmission Schemes) 4
7.	Optimum Receivers for AWGN Channels	13
8.	Information Theory and Coding	32

Note: This book contains copyright subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means.

Violators are liable to be legally prosecuted.

Theory of Random Variable and Noise

Q.1 Define PDF and summarise its important properties. Also calculate the probability of outcome of a Random Variable (RV) X having $X \le 1$ for the following PDF curve of RV as shown.

Solution:

Probability density function specifies the probability of a random variable taking a particular value.

The Probability Density Function (PDF) which is generally denoted by $f_{\chi}(x)$ or $P_{\chi}(x)$ or $P_{\chi}(x)$ is defined in terms of the Cumulative Distribution Function (CDF) $F_{\chi}(x)$ as,

$$PDF = f_X(x) = \frac{d}{dx} F_X(x)$$
...(i)

The PDF has the following properties:

- (i) $f_x(x) \ge 0$ for all x
 - This results from the fact that probability cannot be negative. Also, $F_{\chi}(x)$ increases monotonically, as x increases, more outcomes are included in the prob. of occurrence represented by $F_{\chi}(x)$.
- (ii) Area under the PDF curve is always equal to unity.

i.e.
$$\int_{-\infty}^{\infty} f_X(x) \, dx = 1$$

(iii) The CDF is obtained by the result

CDF =
$$\int_{-\infty}^{x} f_X(x) dx$$

(iv) Probability of occurrence of the value of random variable between the limits of x_1 and x_2 is given by,

$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} f_X(x) dx$$

Now consider the given PDF curve, since we have to find $P(x \le 1)$ so,

Equation for the PDF curve for $x \le 1$ is,

$$f_X(x) = \left(\frac{1}{12}x + \frac{1}{6}\right)$$

Now, $P(x \le 1)$

$$= P(-2 < x < 1) = \int_{-2}^{1} \left(\frac{1}{12}x + \frac{1}{6}\right) dx = \left[\frac{1}{12} \cdot \frac{x^{2}}{2} + \frac{1}{6}x\right]_{-2}^{1} = \frac{3}{8}$$

$$P(x \le 1) = \frac{3}{8}$$

Q2 Find the cumulative distribution function F(x) corresponding to the PDF $f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty$.

Solution:

Given
$$f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty$$

$$F(x) = P(X \le x)$$

$$= \int_{-\infty}^{x} f(x) dx = \frac{1}{\pi} \int_{-\infty}^{x} \frac{dx}{1+x^2} = \frac{1}{\pi} \left[\tan^{-1} x \right]_{-\infty}^{x} = \frac{1}{\pi} \left(\frac{\pi}{2} + \tan^{-1} x \right)$$

Q3 Given the random variable X with density function

$$f_{\chi}(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

Find the PDF of $Y = 8 X^3$.

Solution:

Given
$$y = 8x^{3} \text{ is an increasing function in } (0, 1)$$

$$y = 8x^{3}$$

$$\Rightarrow x^{3} = \frac{y}{8}$$

$$\Rightarrow x = \left(\frac{y}{8}\right)^{1/3} = \frac{1}{2}y^{1/3}$$
and
$$f_{\chi}(x) = 2x, \qquad 0 < x < 1$$

$$f_{\chi}(y) = \frac{2y^{1/3}}{2} = \frac{y^{1/3}}{3}$$

$$f_{\gamma}(y) = x = \left(\frac{y}{8}\right)^{1/3} = \frac{1}{2}y^{1/3} \qquad \Rightarrow \frac{dx}{dy} = \frac{1}{6}y^{-2/3}$$
Using it in (i)
$$f_{\gamma}(y) = y^{1/3} \frac{1}{6}y^{-2/3} = \frac{1}{6}y^{-1/3} = \frac{1}{6}\frac{1}{y^{1/3}} = \frac{1}{6}\frac{1}{3\sqrt{y}}$$

The range for x is 0 < x < 1

When x = 0, $y = 8 \times 0 = 0$ and x = 1, $y = 8 \times 1^3 = 8$

$$f_{\gamma}(y) = \frac{1}{6\sqrt[3]{y}}, \qquad 0 < y < 8$$

A BSC (Binary Symmetric Channel) error probability is P_e . The probability of transmitting '1' is Q, and that of transmitting '0' is (1 - Q) as in figure below. Calculate the probabilities of receiving 1 and 0 at the receiver?

Solution:

If x and y are the transmitted digit and the received digit respectively, then for a BSC,

$$P_{\mathcal{N}^{\chi}}(0|1) = P_{\mathcal{N}^{\chi}}(1|0) = P_{e}$$

$$P_{\mathcal{N}^{\chi}}(0|0) = P_{\mathcal{N}^{\chi}}(1|1) = 1 - P_{e}$$
Also,
$$P_{\chi}(1) = Q \text{ and } P_{\chi}(0) = 1 - Q$$
We have to find,
$$P_{\chi}(1) \text{ and } P_{\chi}(0) = ?$$

$$\therefore \qquad P_{\chi}(1) = P_{\chi}(0) P_{\mathcal{N}^{\chi}}(1|0) + P_{\chi}(1) P_{\mathcal{N}^{\chi}}(1|1) = (1 - Q)P_{e} + Q(1 - P_{e})$$
also,
$$P_{\chi}(0) = P_{\chi}(0)P_{\mathcal{N}^{\chi}}(0|0) + P_{\chi}(1)P_{\mathcal{N}^{\chi}}(0|1) = (1 - Q)(1 - P_{e}) + QP_{e}$$

Q5 For the triangular distribution

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 \le x \le 2 \\ 0, & \text{otherwise} \end{cases}$$

Find the mean and variance.

Solution:

Mean =
$$E(X) = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{1} x \cdot x \, dx + \int_{1}^{2} x(2-x) \, dx = \int_{0}^{1} x^{2} \, dx + \int_{1}^{2} (2x-x^{2}) \, dx$$

$$= \left[\frac{x^{3}}{3}\right]_{0}^{1} + \left[2\left(\frac{x^{2}}{2}\right) - \frac{x^{3}}{3}\right]_{1}^{2}$$

$$= \frac{1}{3} + \left[\left(4 - \frac{8}{3}\right) - \left(1 - \frac{1}{3}\right)\right] = \frac{1}{3} + \frac{4}{3} - \frac{2}{3} = 1$$

$$E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{1} x^{2} x \, dx + \int_{1}^{2} x^{2} (2-x) \, dx$$

$$= \int_{0}^{1} x^{3} \, dx + \int_{1}^{2} (2x^{2} - x^{3}) \, dx = \left[\frac{x^{4}}{4}\right]_{0}^{1} + \left[2\left(\frac{x^{3}}{3}\right) - \frac{x^{4}}{4}\right]_{1}^{2}$$

$$= \frac{1}{4} + \left[\left(\frac{16}{3} - \frac{16}{4}\right) - \left(\frac{2}{3} - \frac{1}{4}\right)\right] = \frac{1}{4} + \frac{16}{3} - 4 - \frac{2}{3} + \frac{1}{4} = \frac{7}{6}$$

$$Var(X) = E(X^{2}) - E(X)^{2} = \frac{7}{6} - (1)^{2} = \frac{1}{6}$$

Q.6 The joint density function of two continuous random variables is given by

$$f(x, y) = \begin{cases} xy/8, & 0 < x < 2, \ 1 < y < 3 \\ 0, & \text{otherwise} \end{cases}$$

Find (a) E(X), (b) E(Y) and (c) E(2X + 2Y).

Solution:

(a)
$$E(X) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xf(x, y) dx dy = \int_{x=0}^{2} \int_{y=1}^{3} x(xy/8) dx dy = \frac{4}{3}$$

(b)
$$E(Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} yf(x, y) dx dy = \int_{x=0}^{2} \int_{y=1}^{3} y(xy/8) dx dy = \frac{13}{6}$$

(c)
$$E(2X+3Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (2x+3y) dx dy = \int_{x=0}^{2} \int_{y=1}^{3} (2x+3y)(xy/8) dx dy = \frac{55}{6}$$

Let z be a random variable with probability density function $f_z(z) = \frac{1}{2}$ in the range $-1 \le z \le 1$. Let the random variable x = z and the random variable $y = z^2$. Obviously x and y are not independent since $x^2 = y$. Show that x and y are uncorrelated.

Solution:

We have,
$$E(z) = \int_{-1}^{1} z \cdot f_{Z}(z) dz$$

 $\Rightarrow \qquad E(z) = \frac{1}{4} [z^{2}]_{-1}^{1} = 0$
Since, $x = z$, so $E(x) = E(z) = 0$
Since, $y = z^{2}$ so $E(y) = E(z^{2})$
So that, $E(y) = \int_{-1}^{1} \frac{1}{2} z^{2} dz = \frac{1}{6} [z^{3}]_{-1}^{1} = \frac{1}{3}$

We know that, the co-variance ' μ ' of two RVs x and y is defined as,

$$\mu = E\{(x - m_x) (y - m_y)\}\$$

$$= E\{(x)\left(y - \frac{1}{3}\right)\} = E\{xy - \frac{1}{3}x\} = E\{z^3 - \frac{z}{3}\} = \int_{-1}^{1} \frac{1}{2}\left(z^3 - \frac{z}{3}\right) dz$$

$$\mu = 0$$

Now, correlation coefficient between the variables x and y is defined by quantity ' ρ ' as,

$$\rho = \frac{\mu}{\sigma_r \sigma_v} = 0$$

So, we can say that these RV's X and Y are uncorrelated.

A WSS random process x(t) is applied to the input of an LTI system with impulse response $h(t) = 3e^{-2t} u(t)$

Find the mean value of the output y(t) of the system, if E[x(t)] = 2. Here $E[\cdot]$ denotes the expectation operator.

Solution:

The output y(t) is the convolution of the input x(t) and the impulse response h(t).

$$y(t) = \int_{-\infty}^{\infty} h(\tau) \cdot x(t - \tau) \cdot d\tau$$

$$E[y(t)] = \int_{-\infty}^{\infty} h(\tau) \cdot E[x(t - \tau)] \cdot d\tau$$

$$E[y(t)] = H(0) \times E[x(t)]$$

$$E[y(t)] = E[x(t)] \cdot H(0)$$

where, $H(0) = H(\omega)|_{\omega=0}$ and $H(\omega) =$ Fourier transform of h(t)

Given
$$E[x(t)] = 2$$
,

$$h(t) = 3e^{-2t}u(t)$$

Taking Fourier transform,

$$H(\omega) = \frac{3}{2 + i\omega} \implies H(0) = \frac{3}{2}$$

$$E[y(t)] = 2 \times \frac{3}{2} = 3$$

Suppose that two signals $s_1(t)$ and $s_2(t)$ are orthogonal over the interval (0, T). A sample function n(t) of a zero-mean white noise process is correlated with $s_1(t)$ and $s_2(t)$ separately, to yield the following variables:

$$n_1 = \int_0^T s_1(t) n(t) dt$$
 and $n_2 = \int_0^T s_2(t) n(t) dt$

Prove that n_1 and n_2 are orthogonal.

Solution:

$$E[n_{1}n_{2}] = E\left[\int_{0}^{T} s_{1}(u) n(u) du \int_{0}^{T} s_{2}(v) n(v) dv\right]$$
$$= \int_{0}^{T} \int_{0}^{T} s_{1}(u) s_{2}(v) E[n(u) n(v)] du dv$$

n(t) is a white noise process.

So,
$$R_{N}(\tau) = \frac{N_{0}}{2}\delta(\tau)$$

$$E[n(u)n(v)] = \frac{N_{0}}{2}\delta(u-v)$$
Hence,
$$E[n_{1}n_{2}] = \frac{N_{0}}{2}\int_{0}^{T}\int_{0}^{T}s_{1}(u)s_{2}(v)\delta(u-v)dudv$$

$$= \frac{N_{0}}{2}\int_{0}^{T}s_{1}(u)s_{2}(u)du$$

$$= 0 \qquad \therefore s_{1}(t) \text{ and } s_{2}(t) \text{ are orthogonal over } (0, T)$$

 $E[n_1n_2] = 0$. So, n_1 and n_2 are also orthogonal.