POSTAL Book Package

2023

ESE

Electronics Engineering

Conventional Practice Sets

Electronic Devices and Circuits

Contents

SI.	Topic Page No.
1.	Basic Semiconductor Physics
2.	PN Junction and Circuits
3.	Bipolar Junction Transistor
4.	Field Effect Transistor
5.	Power Switching Devices and Circuits
6.	Introduction to IC Fabrication

Note: This book contains copyright subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means.

Violators are liable to be legally prosecuted.

Basic Semiconductor Physics

Q1 What is doping? Give the advantage of doping.

Solution:

Addition of impurities to the pure semiconductor and making it impure is called doping.

Adding pentavalent impurity can cause 4 covalent bonds with the semiconductor and 1 electron is left free. Adding this donor causes a new energy level, below the conduction band.

Adding trivalent impurity causes 3 covalent bonds and there is absence of 1 electron which will get occupied in acceptor level just above valence band.

Doping increases the conductance of semiconductor.

Two scattering i.e. impurity and lattice are existing in a semiconductor and if only one mechanism is present, the mobility will be 250 cm²/V-sec and if other scattering mechanism only present then the mobility is 500 cm²/V-sec. Find the resultant mobility.

Solution:

$$\frac{1}{\mu} = \frac{1}{\mu_1} + \frac{1}{\mu_2} = \frac{1}{250} + \frac{1}{500}$$

$$\mu = 166.67 \text{ cm}^2/\text{V-sec}$$

Q3 Distinguish between direct and indirect bandgap materials with suitable *r-k* diagrams.

How would you make an intrinsic GaAs sample *n*-type or *p*-type? What happens when GaAs is doped with Si? What is the nature of bonding in GaAs?

Solution:

Direct Band Gap Material:

In a direct band gap semiconductor such as GaAs, an electron in the conduction band can fall to an empty state in the valance band, giving off the energy difference E_a as a photon of light.

• This property of direct band gap material can be used in designing devices requiring light output. *r-k* diagram for direct band gap material is as.

- These are the materials for which lowest energy state of conduction band and higher energy state of valance band occurs for "same value of momentum".
- In these type of materials the recombination occurs without the help of an external agent. No second particle is emitted.

Indirect Band Gap Material:

An electron in lowest energy conduction band of an indirect semiconductor can not fall directly to the valance band of maximum energy but also "undergo a momentum change" as well as changing its energy. *r-k* diagram for indirect band gap material is

- These are the materials in which higher most energy state of valance band and lower most energy state of conduction band occurs for different values of momentum.
- The probability of recombination is very less.
- So an external agent (Au) is required.
- In these materials recombination occurs in following steps:
 - **1.** Gold create trap levels (energy state which has momentum value K_1).
 - 2. As soon as any electron jumps from C.B. to trap level it's momentum value becomes K_1 .
 - **3.** Now it falls and recombine with hole having same value of momentum K_1 in opposite direction.
- Energy is released mainly in the form of heat.
- A second particle phonon is emitted when electron falls from C.B. to trap energy state E_t and this phonon collides with lattice crystal and loss it's energy in the form of heat.
- In GaAs \rightarrow Ga is from III group and As is from V group.
- So in order to make GaAs *n*-type we will increase the concentration As(V group) in GaAs compare to Ga.
- In order to make GaAs *p*-type, we will increase the concentration (doping) of Ga compare to As in GaAs.
- In GaAs → bonding is mixed bonding covalent as well as ionic character.
- Ionic bonding is due to difference in placement of Ga and As atoms in the periodic table.

Q4 A semiconductor has a bandgap of 0.62 eV. Find the maximum wavelength for resistance change in the material by photon absorption. (Note: $1 \text{ eV} = 1.6 \times 10^{-19} \text{ Joules}$)

Solution:

We know that

$$E = \frac{hc}{\lambda}$$

Where.

E = Energy bandgap = 0.62 eV (given)

 $h = \text{Planck constant} = 6.626 \times 10^{-34} \text{ Joule-sec}$

 $c = \text{Velocity of light in free space} = 3 \times 10^8 \text{ m/sec}$

 λ = Wavelength

So,

$$\lambda = \frac{hc}{E} = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{0.62 \times 1.6 \times 10^{-19}}$$
$$\lambda = 2.004 \times 10^{-6} = 2.004 \,\mu\text{m}$$

- Q5 (a) Explain "The Mass-Action Law"?
 - (b) What is the Law of electrical neutrality of a semiconductor?
 - (c) A small number of readily ionized donors N_D are added to an intrinsic semiconductor, such that N_D $<< n_i$, where n_i is the intrinsic carrier concentration. Then by using the concept involved in part (a) and (b); find the free electron and hole concentration in the semiconductor. What is the type of material?

Solution:

(a) Mass-Action Law:

In an extrinsic semiconductor, under thermal equilibrium, the product of the free negative and positive concentrations is a constant and is independent of the amount of donor and acceptor impurity doping. This relationship is called "Mass-Action Law" and is given by:

$$n\rho = n_i^2 \qquad \dots (i)$$

where, n; is the intrinsic concentration and is a function of temperature.

- ⇒ This law is used to determine the concentration of minority carriers in a semiconductor.
- (b) Since, the semiconductor is electrically neutral, so according to the Law of electrical neutrality "the magnitude of the positive charge density i.e. $(N_D + p)$ must equal that of the negative charge concentration i.e. $(N_A + n)$. So,

$$N_D + p = N_A + n \qquad \dots (ii)$$

where.

 N_D = Positive charges/m³ and is contributed by donor ions.

 N_{Δ} = Negative charges/m³ and is contributed by acceptor ions.

(c) Here, let us assume that free electron and free hole concentration is ' n_0 ' and ' p_0 ' respectively. So, from equation (i) and (ii) as in part (a) and (b) we have,

$$n_0 p_0 = n_i^2$$
 ...(iii)

$$n_0 + N_A = p_0 + N_D$$
 ...(iv)

and $n_0 + N_A = p_0 + N_D$ Substituting the value of ' p_0 ' from equation (iii) into equation (iv) yields,

$$n_0 + N_A = \frac{n_i^2}{n_0} + N_D$$

$$n_0 = \left(\frac{N_D - N_A}{2}\right) + \frac{1}{2}\sqrt{(N_D - N_A)^2 + 4n_i^2} \qquad ...(vi)$$

Neglecting the negative terms of n_0 as ' n_0 ' has the positive value.

Similarly, ' p_0 ' is obtained by putting the value of ' n_0 ' from equation (iii) into equation (iv) and thus we get ' p_0 ' as:

$$p_0 = -\left(\frac{N_D - N_A}{2}\right) + \frac{1}{2}\sqrt{(N_D - N_A)^2 + 4n_i^2} \qquad \dots (vii)$$

Neglecting the negative term of ' p_0 ' as ' p_0 ' has +ve values.

Also given that,

$$N_D << n_i$$

and since donors are added so,

$$N_{\Omega} > N_{\Delta}$$

So, we have, $N_A < N_D << n_i$

...(viii)

By using expression (viii) in the equation (vi) and (vii) then we may get,

$$n_0 = n_i + \left(\frac{N_D - N_A}{2}\right)$$

and

$$p_0 = n_i - \left(\frac{N_D - N_A}{2}\right)$$

This type is called Intrinsic compensated material. This state can also occur at high temperature when, $n_i >> (N_D - N_\Delta)$.

Q.6 (a) Describe the 'Einstein Relationship'?

(b) Find the probability of finding an electron 0.2 eV above the Fermi level at 300°K?

Solution:

(a) Since both diffusion and mobility are statistical thermodynamic phenomena so diffusion constant (D) and mobility (μ) are not independent. The relationship between the D and μ is given by the 'Einstein Relationship', which is mathematically given as,

$$\frac{D_p}{\mu_p} = \frac{D_n}{\mu_n} = V_T \qquad \dots (i)$$

where, V_{τ} is the 'Volt-equivalent of temperature' and is defined by,

$$V_T = \frac{\bar{k}T}{g} = \frac{T}{11600}$$
 ...(ii)

where, \overline{k} is the Boltzmann constant in J/°K

At room temperature i.e.

$$T = 300^{\circ} \text{K}$$

$$V_T = 0.026 \text{ V} = 26 \text{ mV}$$

and

$$\mu = 39 D$$

∴ and

$$D_n$$
 for Ge = $\mu_n V_T$ = 99 cm²/sec

and

$$D_p = \mu_p V_T = 13 \text{ cm}^2/\text{sec}$$

(b) Given that,

$$T = 300^{\circ} \text{K}$$
 and
$$E - E_F = 0.2 \, \text{eV}$$
 i.e.
$$E = E_F + 0.2 \, \text{eV}$$
 also,
$$V_T = K \cdot T = 0.026 \, \text{V}$$

.. Probability of finding an electron 0.2 eV above the Fermi level is given by,

$$f(E = E_F + 0.2 \text{ eV}) = \frac{1}{1 + \exp\left(\frac{0.2}{0.026}\right)} = \frac{1}{1 + \exp(7.692)} = 4.561 \times 10^{-4}$$

$$\approx 0.0004561$$