POSTAL Book Package

2023

ESE

Electronics Engineering

Conventional Practice Sets

Network Theory

Contents

SI.	Topic Page No.
1.	Basics, Circuit Elements, Nodal & Mesh Analysis
2.	Circuit Theorems
3.	Capacitors and Inductors
4.	Transient Response of DC and AC Networks (First Order RL & RC Circuits, Second Order RLC Circuits)
5.	Sinusoidal Steady State Analysis, AC Power Analysis
6.	Magnetically Coupled Circuits
7.	Frequency Response and Resonance
8.	Two Port Networks
9.	Network Topology, Miscellaneous

Note: This book contains copyright subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means.

Violators are liable to be legally prosecuted.

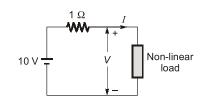
T CHAPTER

Basics, Circuit Elements, Nodal & Mesh Analysis

Q1 A 10 V battery with an internal resistance of 1 Ω is connected across a non-linear load whose V-I characteristics is given by $7I = V^2 + 2$ V. Find the current delivered by the battery.

Solution:

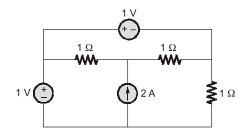
Using KVL,


$$V + I = 10$$
 ...(i)

Given, $7I = V^2 + 2 V$...(ii)

On solving equation (i) and equation (ii)

we get,
$$V = 5 \text{ Volts}$$


$$I = 5 A$$

 1Ω

>1Ω

Q2 Find the power delivered by the current source in the figure shown below.

Solution:

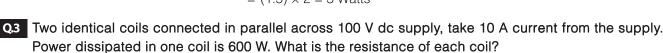
Consider node voltages V_a , V_b , V_x as shown below.

Applying nodal analysis,

$$\frac{V_x - V_a}{1} + \frac{V_x - V_b}{1} = 2$$

$$\Rightarrow \qquad 2V_x - (V_a + V_b) = 2$$

$$\Rightarrow \qquad V_x = \frac{2 + (V_a + V_b)}{2} \qquad \dots (i)$$
Also,
$$V_a - V_b = 1 \ V_a = 1 \ V_b = 1 \ V$$


$$V_a - V_b = 1 V$$

$$V_a = 1 V$$

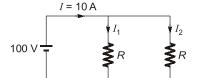
$$V_b = 0 V$$

Solving further,
$$V_x = \frac{2 + (1 + 0)}{2} = 1.5 \text{ V}$$

:.Power delivered by current source =
$$V_x \cdot I$$
 [$I = 2 \text{ A (given)}$]
= $(1.5) \times 2 = 3 \text{ Watts}$

Solution:

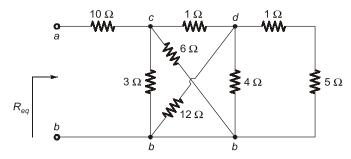
Thus,


Given, Power dissipated in one coil = 600 W

$$I = I_1 + I_2$$

$$I_1 = I_2$$

$$I_1 = I_2 = \frac{10 \text{ A}}{2} = 5 \text{ A}$$


Power dissipated,

$$P = I_1^2 R$$

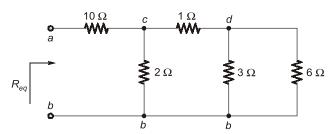
Hence, resistance of coil,

$$R = \frac{P}{I_1^2} = \frac{600}{(5)^2} = 24 \Omega$$

Q4 Calculate equivalent resistance R_{eq} in the circuit shown.

Solution:

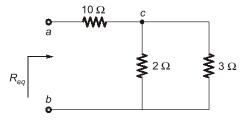
 $3~\Omega$ and $6~\Omega$ resistors in parallel because they are connected to same two nodes c and b. Their combined resistance is


$$=\frac{3\times6}{3+6}=2\,\Omega$$

Similarly, 12Ω and 4Ω resistors are in parallel since they are connected to same two nodes d and b.

Hence,
$$12 \Omega | |4 \Omega| = \frac{12 \times 4}{12 + 4} = 3 \Omega$$

Also, 1 Ω and 5 Ω resistors are in series, hence combined resistance,

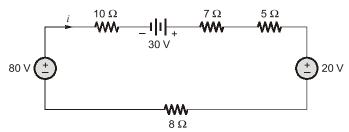

$$1 \Omega + 5 \Omega = 6 \Omega$$

Further 3 Ω and 6 Ω in parallel gives equivalent resistance = $\frac{3 \Omega \times 6 \Omega}{(3+6) \Omega} = 2 \Omega$

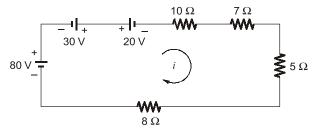
This 2 Ω in series with 1 Ω .

Given equivalent as $(2 + 1) \Omega = 3 \Omega$ as shown below.

Now 2 Ω and 3 Ω parallel's combination in series with 10 Ω resistance.



Hence,


$$R_{ab} = R_{eq} = 10 \Omega + (2 \Omega | | 3 \Omega)$$

= $10 + \frac{2 \times 3}{2 + 3} = 11.2 \Omega$

Q5 Use resistance and source combinations to determine the current in figure shown and power delivered by 80 V source.

Solution:

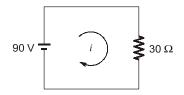
The circuit can be redrawn as,

Further combining the three voltage sources into an equivalent source of 90 V as shown below.

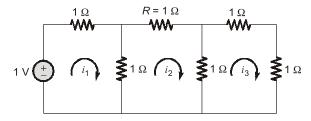
All the resistance, combined in series as,

$$R_{eq} = (10+7+5+8)\,\Omega = 30\,\Omega \label{eq:eq}$$

 $-90+30i=0$


Simply applying kVL,

$$-90 + 30i = 0$$

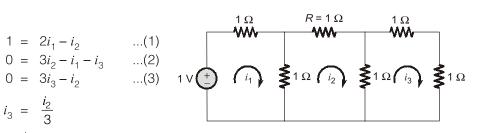

Hence,

$$i = 3 A$$

Power delivered by 80 V source = 80 V × 3 A = 240 W

Q6 Find the power dissipated in the resistor *R* in the ladder network shown in the figure below.

Solution:


Using KVL in loop,

$$1 = 2i_1 - i_2$$
 ...(1)

$$0 = 3i_2 - i_1 - i_3 \qquad ...(2)$$

$$) = 3i_0 - i_0 \tag{3}$$

$$i_3 = \frac{i_2}{2}$$

:.

By solving the equations, we get,

$$i_2 = \frac{3}{13} A$$

 \therefore Power dissipated in the resistor $R = i^2 R = \frac{9}{169} W$

Q7 The following mesh equations pertain to a network:

$$8I_1 - 5I_2 - I_3 = 110$$

 $-5I_1 + 10I_2 + 0 = 0$
 $-I_1 + 0 + 7I_3 = 115$

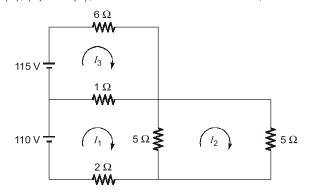
Draw network showing each element.

Solution:

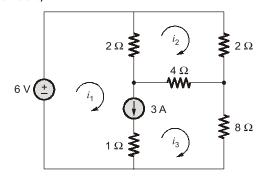
All the mesh equations can be rearrangement as,

$$8I_{1} - 5I_{2} - I_{3} = 110$$

$$\Rightarrow 5(I_{1} - I_{2}) + (I_{1} - I_{3}) + 2I_{1} = 110$$


$$-5I_{1} + 10I_{2} + 0 = 0$$
...(1)

$$5(I_2 - I_1) + 5I_2 = 0 \qquad ...(2)$$


$$-I_1 + 0 + 7I_3 = 115$$

$$\Rightarrow \qquad (I_3 - I_1) + 6I_3 = 115 \qquad ...(3)$$

On the basis of equation (1), (2) and (3), we can draw the network as,

Q8 Find mesh currents in the circuit,

Solution:

$$i_1 - i_3 = 3 A$$
 ...(1)

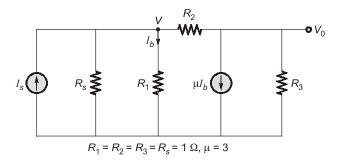
BY KVL for super mesh,

$$2(i_1 - i_2) + 4(i_3 - i_2) + 8i_3 = 6$$

$$2i_1 - 6i_2 + 12i_3 = 6$$
 ...(2)

By KVL for second mesh,

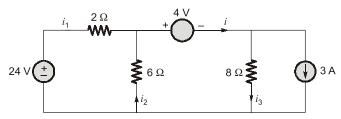
$$2i_2 + 4(i_2 - i_3) + 2(i_2 - i_1) = 0$$

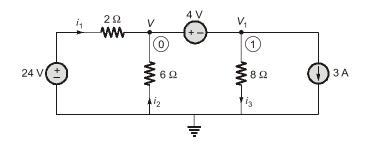

$$8i_2 - 4i_3 - 2i_1 = 0$$
 ...(3)

Solving equations (1), (2) and (3), we get

$$i_1 = 3.473 \,\text{A}$$

 $i_2 = 1.105 \,\text{A}$
 $i_3 = 0.473 \,\text{A}$


Q9 For the circuit shown in the figure determine V_0/I_S using nodal analysis.


Solution:

Q.10 For the circuit shown in figure, determine the currents i_1 , i_2 and i_3 using nodal analysis.

Solution:

By nodal analysis,

$$-i_{1} - i_{2} + i = 0$$

$$-\left(\frac{24 - V}{2}\right) + \left[-\frac{0 - V}{6}\right] + i = 0$$

$$\frac{V - 24}{2} + \frac{V}{6} + i = 0$$

$$V_{1} = V - 4$$
...(1)

KCL at node 1,

$$-i + \frac{V_1}{8} + 3 = 0$$

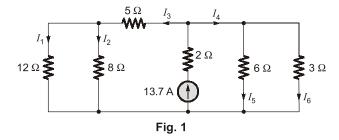
$$i = \left(\frac{V - 4}{8} + 3\right) \qquad ...(2)$$

Combining (1) and (2),

Solving,

$$\frac{V-24}{2} + \frac{V}{6} + \frac{V-4}{8} + 3 = 0$$

$$V = 12 V$$


$$V_1 = 8 V$$

$$i_1 = \frac{24-12}{2} = 6 A$$

$$i_2 = -\frac{12}{6} = -2 A$$

$$i_3 = 1 A$$

Q.11 Find all branch currents in the network shown in figure below.

Solution:

On simplifying the above circuit,

$$R_3 = 5 + \frac{(12)(8)}{20} = 9.8 \Omega$$

$$R_4 = \frac{(6)(3)}{9} = 2 \Omega$$
 $R_3 = 9.8 \Omega$

9.8 Ω $R_4 = 2.0 \Omega$

By current division rule,

$$I_3 = \frac{2}{9.8 + 2} \times 13.7 = 2.32 \,\text{A}$$

$$I_4 = 13.7 - 2.32 = 11.38 \text{ A}$$

Referring original network (Fig. 1),

$$I_1 = \frac{8}{(12+8)} (2.32) = 0.93 \text{ A}$$

 $I_2 = 2.32 - 0.93 = 1.39 \text{ A}$