POSTAL Book Package 2023 ## **Electrical Engineering** **Conventional Practice Sets** | Co | omputer Fundamentals | Contents | |-----|--|----------| | SI. | Topic | Page No. | | 1. | Digital Logic | 2 | | 2. | Computer Organization and Architecture | 14 | | 3. | Programming and Data Structures | 38 | | 4. | Operating System | 56 | | 5. | Program in 'C' | 78 | ## **Digital Logic** ### Q1 Find the minimum product of sums of the following expression: $$f = ABC + \bar{A}\bar{B}\bar{C}$$ #### **Solution:** In order to find the minimum product of sums we must calculate what are the max terms. We have SOP function as: $$f = ABC + \overline{A}\overline{B}\overline{C}$$ \Rightarrow Minimum terms are (0, 7) Thus, maximum terms = (1, 2, 3, 4, 5, 6) By using K-map Hence, minimum product of sum will be $(\bar{A} + B)(A + \bar{C})(\bar{B} + C)$ richoc, minimum product or sum will be (711 b)(711 c)(b 1 c) Show with the help of a block diagram represent Boolean function: $$f = AB + BC + CA$$ can be realised using only 4: 1 multiplexer. #### **Solution:** Q.2 $$f = AB + BC + CA$$ | A BC | 00 | 01 | 11 | 10 | |------|-----|-----|-----|-----| | 0 | 0 0 | 0 1 | 1 3 | 0 2 | | 1 | 0 4 | 1 5 | 1 7 | 1 6 | Using MSB method: Implementing f(A, B, C) using 4×1 MUX Q3 A logic network has two data inputs A and B, and two control inputs C_0 and C_1 . It implements the function F according to the following table. | C ₁ | C_0 | F | |----------------|-------|------------------| | 0 | 0 | $\overline{A+B}$ | | 0 | 1 | A + B | | 1 | 0 | $A \oplus B$ | | 1 | 1 | AB | Implement the circuit using one 4 to 1 Multiplexer, one 2-input Exclusive OR gate, one 2-input AND gate, one 2-input OR gate and one Inverter. #### **Solution:** I_0 will gets activated when both the select lines are zero thus I_0 will intake $\overline{A+B}$. I_1 will gets activated when C_1 is 0 and C_0 is 1 thus I_1 will intake A + B. Similarly, I_2 will intake $A \oplus B$ and I_3 will intake AB. Q4 Find the minimum sum of products form of the logic function. $$f(A, B, C, D) = \Sigma m(0, 2, 8, 10, 15) + \Sigma d(3, 11, 12, 14)$$ Where m and d denote the min-terms and don't cares respectively. #### **Solution:** $$f(A, B, C, D) = \Sigma m(0, 2, 8, 10, 15) + \Sigma d(3, 11, 12, 14)$$ | AB | C | D 0 | 0 | 01 | 11 | | 10 |) | | |---------|----|-----|----|----|----|----|----|----|--| | AB
(| 00 | 1 | 0 | 1 | x | 3 | 1 | 2 | | | (|)1 | | 4 | 5 | | 7 | | 6 | | | , | 11 | х | 12 | 13 | 1 | 15 | Х | 14 | | | , | 10 | 1 | 8 | 9 | x | 11 | 1 | 10 | | | | | | _ | | | | | | | The minimum SOP form of the logic function is given as: f(A, B, C, D) = B'D' + AC. Express the function f(x, y, z) = xy' + yz' with only one complement operation and one or more AND/OR operations. Draw the logic circuit implementing the expression obtained, using a single NOT gate and one or more AND/OR gates. #### **Solution:** To use only single NOT gate, express it with only one complementation and one or more AND/OR operations. $$f(x, y, z) = xy' + yz'$$ Add reduced term to f $$f(x, y, z) = xy' + yz' + xz'$$ $$= yz' + x(y' + z')$$ $$= y(y' + z') + x(y' + z')$$ $$= (x + y)(y' + z') = (x + y)(yz)'$$ Thus the given function has been represented using one complement operation with complement on yz. Logic circuit implementing the expression obtained is given as below: Q.6 Consider the synchronous sequential circuit in figure. (a) Draw a state diagram which is implemented by the circuit. Use the following names for the states corresponding to the values of flip-flops as given below. | 0 | 0 | 0 | S_0 | |---|---|---|----------------| | 0 | 0 | 1 | S ₁ | | 0 | 1 | 0 | S ₂ | | 0 | 1 | 1 | S_3 | | 1 | 0 | 0 | S_4 | | 1 | 0 | 1 | S ₅ | | 1 | 1 | 0 | S_6 | | 1 | 1 | 1 | S ₇ | (b) Given that the initial state of the circuit is S_4 , identify the set of states which are not reachable. **Solution:** | $D_1(Q_2 \oplus Q_3)$ | $D_2(Q_1)$ | $D_3(Q_2)$ | Q_1 | Q_2 | Q_3 | State | |-----------------------|------------|------------|-------|-------|-------|--------------------| | | | | 1 | 1 | 1 | $\overline{(S_7)}$ | | 0 | 1 | 1 | 0 | 1 | 1 | (S_3) | | 0 | 0 | 1 | 0 | 0 | 1 | (S_1) | | 1 | 0 | 0 | 1 | 0 | 0 | (S_4) | | 0 | 1 | 0 | 0 | 1 | 0 | (S_2) | | 1 | 0 | 1 | 1 | 0 | 1 | (S_5) | | 1 | 1 | 0 | 1 | 1 | 0 | (S_6) | | 1 | 1 | 1 | 1 | 1 | 1 | (S_7) | (a) The state diagram which is implemented by the circuit is as follows: - **(b)** If the initial state of the circuit is S_4 , then the state which is not reachable is S_0 $S_4 \rightarrow S_2 \rightarrow S_5 \rightarrow S_6 \rightarrow S_7 \rightarrow S_3 \rightarrow S_1$ - For the synchronous counter shown in figure write the truth table of Q_0 , Q_1 and Q_2 after each pulse starting from $Q_0 = Q_1 = Q_2 = 0$ and determine the counting sequence and also the modulus of the counter. What is the modulus of the counter with initial state Q_2 Q_1 Q_0 = 000? (a) 3 (b) 4 (c) 5 (d) 6 Solution: (c) | J_2 | K ₂ | J_1 | <i>K</i> ₁ | J_0 | K ₀ | Q_2 | Q_1 | $\overline{Q_0}$ | |--------------------------|----------------|-------------------|-----------------------|---------------|-----------------------|-------|-------|------------------| | $(\bar{Q}_0 \bar{Q}_1)$ | (1) | (Q ₂) | (\overline{Q}_0) | $(Q_1 + Q_2)$ | (1) | | | | | Initially | | | | | | 0 | 0 | 0 | | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 - | | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0_ | There are 5 different states in the synchronous counter. Therefore, the modulus of the counter is 5. Q8 Analyse the circuit in figure and complete the following table: