# POSTAL Book Package

2023

## **Electrical Engineering**

**Conventional Practice Sets** 

| Co  | omputer Fundamentals                   | Contents |
|-----|----------------------------------------|----------|
| SI. | Topic                                  | Page No. |
| 1.  | Digital Logic                          | 2        |
| 2.  | Computer Organization and Architecture | 14       |
| 3.  | Programming and Data Structures        | 38       |
| 4.  | Operating System                       | 56       |
| 5.  | Program in 'C'                         | 78       |





## **Digital Logic**

### Q1 Find the minimum product of sums of the following expression:

$$f = ABC + \bar{A}\bar{B}\bar{C}$$

#### **Solution:**

In order to find the minimum product of sums we must calculate what are the max terms. We have SOP function as:

$$f = ABC + \overline{A}\overline{B}\overline{C}$$

 $\Rightarrow$  Minimum terms are (0, 7)

Thus, maximum terms = (1, 2, 3, 4, 5, 6)

By using K-map

Hence, minimum product of sum will be  $(\bar{A} + B)(A + \bar{C})(\bar{B} + C)$ 



richoc, minimum product or sum will be (711 b)(711 c)(b 1 c)

Show with the help of a block diagram represent Boolean function:

$$f = AB + BC + CA$$

can be realised using only 4: 1 multiplexer.

#### **Solution:**

Q.2

$$f = AB + BC + CA$$

| A BC | 00  | 01  | 11  | 10  |
|------|-----|-----|-----|-----|
| 0    | 0 0 | 0 1 | 1 3 | 0 2 |
| 1    | 0 4 | 1 5 | 1 7 | 1 6 |

Using MSB method:

Implementing f(A, B, C) using  $4 \times 1$  MUX



Q3 A logic network has two data inputs A and B, and two control inputs  $C_0$  and  $C_1$ . It implements the function F according to the following table.

| C <sub>1</sub> | $C_0$ | F                |
|----------------|-------|------------------|
| 0              | 0     | $\overline{A+B}$ |
| 0              | 1     | A + B            |
| 1              | 0     | $A \oplus B$     |
| 1              | 1     | AB               |

Implement the circuit using one 4 to 1 Multiplexer, one 2-input Exclusive OR gate, one 2-input AND gate, one 2-input OR gate and one Inverter.

#### **Solution:**

 $I_0$  will gets activated when both the select lines are zero thus  $I_0$  will intake  $\overline{A+B}$ .

 $I_1$  will gets activated when  $C_1$  is 0 and  $C_0$  is 1 thus  $I_1$  will intake A + B.

Similarly,  $I_2$  will intake  $A \oplus B$  and  $I_3$  will intake AB.



Q4 Find the minimum sum of products form of the logic function.

$$f(A, B, C, D) = \Sigma m(0, 2, 8, 10, 15) + \Sigma d(3, 11, 12, 14)$$

Where m and d denote the min-terms and don't cares respectively.

#### **Solution:**

$$f(A, B, C, D) = \Sigma m(0, 2, 8, 10, 15) + \Sigma d(3, 11, 12, 14)$$

| AB      | C  | D 0 | 0  | 01 | 11 |    | 10 | )  |  |
|---------|----|-----|----|----|----|----|----|----|--|
| AB<br>( | 00 | 1   | 0  | 1  | x  | 3  | 1  | 2  |  |
| (       | )1 |     | 4  | 5  |    | 7  |    | 6  |  |
| ,       | 11 | х   | 12 | 13 | 1  | 15 | Х  | 14 |  |
| ,       | 10 | 1   | 8  | 9  | x  | 11 | 1  | 10 |  |
|         |    |     | _  |    |    |    |    |    |  |

The minimum SOP form of the logic function is given as: f(A, B, C, D) = B'D' + AC.

Express the function f(x, y, z) = xy' + yz' with only one complement operation and one or more AND/OR operations. Draw the logic circuit implementing the expression obtained, using a single NOT gate and one or more AND/OR gates.

#### **Solution:**

To use only single NOT gate, express it with only one complementation and one or more AND/OR operations.

$$f(x, y, z) = xy' + yz'$$

Add reduced term to f



$$f(x, y, z) = xy' + yz' + xz'$$

$$= yz' + x(y' + z')$$

$$= y(y' + z') + x(y' + z')$$

$$= (x + y)(y' + z') = (x + y)(yz)'$$

Thus the given function has been represented using one complement operation with complement on yz. Logic circuit implementing the expression obtained is given as below:



Q.6 Consider the synchronous sequential circuit in figure.



(a) Draw a state diagram which is implemented by the circuit. Use the following names for the states corresponding to the values of flip-flops as given below.

| 0 | 0 | 0 | $S_0$          |
|---|---|---|----------------|
| 0 | 0 | 1 | S <sub>1</sub> |
| 0 | 1 | 0 | S <sub>2</sub> |
| 0 | 1 | 1 | $S_3$          |
| 1 | 0 | 0 | $S_4$          |
| 1 | 0 | 1 | S <sub>5</sub> |
| 1 | 1 | 0 | $S_6$          |
| 1 | 1 | 1 | S <sub>7</sub> |

(b) Given that the initial state of the circuit is  $S_4$ , identify the set of states which are not reachable. **Solution:** 

| $D_1(Q_2 \oplus Q_3)$ | $D_2(Q_1)$ | $D_3(Q_2)$ | $Q_1$ | $Q_2$ | $Q_3$ | State              |
|-----------------------|------------|------------|-------|-------|-------|--------------------|
|                       |            |            | 1     | 1     | 1     | $\overline{(S_7)}$ |
| 0                     | 1          | 1          | 0     | 1     | 1     | $(S_3)$            |
| 0                     | 0          | 1          | 0     | 0     | 1     | $(S_1)$            |
| 1                     | 0          | 0          | 1     | 0     | 0     | $(S_4)$            |
| 0                     | 1          | 0          | 0     | 1     | 0     | $(S_2)$            |
| 1                     | 0          | 1          | 1     | 0     | 1     | $(S_5)$            |
| 1                     | 1          | 0          | 1     | 1     | 0     | $(S_6)$            |
| 1                     | 1          | 1          | 1     | 1     | 1     | $(S_7)$            |



(a) The state diagram which is implemented by the circuit is as follows:



- **(b)** If the initial state of the circuit is  $S_4$ , then the state which is not reachable is  $S_0$   $S_4 \rightarrow S_2 \rightarrow S_5 \rightarrow S_6 \rightarrow S_7 \rightarrow S_3 \rightarrow S_1$
- For the synchronous counter shown in figure write the truth table of  $Q_0$ ,  $Q_1$  and  $Q_2$  after each pulse starting from  $Q_0 = Q_1 = Q_2 = 0$  and determine the counting sequence and also the modulus of the counter.



What is the modulus of the counter with initial state  $Q_2$   $Q_1$   $Q_0$  = 000?

(a) 3

(b) 4

(c) 5

(d) 6

Solution: (c)

| $J_2$                    | K <sub>2</sub> | $J_1$             | <i>K</i> <sub>1</sub> | $J_0$         | <b>K</b> <sub>0</sub> | $Q_2$ | $Q_1$ | $\overline{Q_0}$ |
|--------------------------|----------------|-------------------|-----------------------|---------------|-----------------------|-------|-------|------------------|
| $(\bar{Q}_0  \bar{Q}_1)$ | (1)            | (Q <sub>2</sub> ) | $(\overline{Q}_0)$    | $(Q_1 + Q_2)$ | (1)                   |       |       |                  |
| Initially                |                |                   |                       |               |                       | 0     | 0     | 0                |
| 1                        | 1              | 0                 | 1                     | 0             | 1                     | 1     | 0     | 0 -              |
| 1                        | 1              | 1                 | 1                     | 1             | 1                     | 0     | 1     | 1                |
| 0                        | 1              | 0                 | 0                     | 1             | 1                     | 0     | 1     | 0                |
| 0                        | 1              | 0                 | 1                     | 1             | 1                     | 0     | 0     | 1                |
| 0                        | 1              | 0                 | 0                     | 0             | 1                     | 0     | 0     | 0_               |

There are 5 different states in the synchronous counter.

Therefore, the modulus of the counter is 5.

Q8 Analyse the circuit in figure and complete the following table:

