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Signals and Systems

Introduction to Signals and Systems

This book starts with basic and extensive chapter on signals in which continuous
and discrete-time case are discussed in parallel. A variety of basic signals, functions
with their mathematical description, representation and properties are incorporated.
A substantial amount of examples are given for quick sketching of functions. A
chapter on systems is discussed separately which deals with classification of
systems, both in continuous and discrete domain and more emphasize is given to
LTI systems and analytical as well as graphical approach is used to understand
convolution operation. These two chapters makes backbone of the subject.

Further we shall proceed to transform calculus which is important tool of signal
processing. A logical and comprehensive approach is used in sequence of chapters.
The continuous time Fourier series which is base to the Fourier transform, deals
with periodic signal representation in terms of linear complex exponential, is
discussed.

The Fourier transform is discussed before Laplace transform. The sampling, a
bridge between continuous-time and discrete-time, is discussed to understand
discrete-time domain.

A major emphasis is given on proof of the properties so that students can understand
and analyzes fundamental easily.

A point wise recapitation of all the important points and results in every chapter
proves helpfull to students in summing up essential developments in the chapter
which is an integral part of any competitive examination.




CHAPTER

Introduction to Signals

Introduction

A signal is any quantity having information associated with it. It may also be defined as a function of one
or more independent variables which contain some information.
A function defines a relationship between two sets i.e. one is
domain and another is range.

It means function defines mapping from one set to
another and similarly a signal may also be defined as mapping
from one set (domain) to another (range). e.g.

e A speech signal would be represented by acoustic pressure as a function of time.

e A monochromatic picture would be represented by brightness as a function of two spatial variable.

e Avoltage signal is defined by a voltage across two points varying as function of time.

e Avideo signal, in which color and intensity as a function of 2-dimensional space (2D) and 1-dimensional

time (i.e. hybrid variables).

Domain Figure-1.1 Range

NOTE: In this course of “signals and systems”, we shall focus on signals having only one variable and will
consider ‘time’ as independent variable.

1.1 Elementary Signals

These signals serve as basic building blocks for construction of somewhat more complex signals. The
list of elementary signals mainly contains singularity functions and exponential functions.

These elementary signals are also known as basic signals/standard signals.

Let us discuss these basic signals one-by-one.

1.1.1 Unit Impulse Function
A continuous-time unit impulse function 8(t), also called as dirac delta function is defined as

o, t=0 o
8(t) = {o, stherwise 2N j 3(t)at =1

—oo

The unit-impulse function is represented by an arrow with strength of ‘1’ which represents its ‘area’
or ‘weight’.
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N

5(t)

0
Figure-1.2

The above definition of an impulse function is more generalised and can be represented as limiting
process without any regard to shape of a pulse. For example, one may define impulse function as a limiting case
of rectangular pulse, triangular pulse Gaussian pulse, exponential pulse and sampling pulse as shown below:

(i) Rectangular Pulse

. t
5() = lim p(t) PO
e—0 l
2¢
A
TP
1
2Tp
-T, Lo T, t
I28I
Figure-1.3
(ii) Triangular Pulse
A(t)
1], |t PR
im—|1-—1 ; |t|<
8(1) = Hor{ J [tl<= i
0 >
a1
T
-1, T 0 -, 1 t
Figure-1.4
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(iii) Gaussian Pulse

ERSYH

A(t)
8(t) = lim 1[e‘“f2”2}

=0T

0
Figure-1.5
(iv) Exponential Pulse

(1) = fim - [l

Alt)
10271 .1
27
1
21,
0 t
Figure-1.6
(v) Sampling Function
<k ki
[ =Salkt)at =1 7
T / \
/\V/\ /'\v/\
\/ \/ t
Fig. (a)
k,

YA N A
MAAVARVAA R
Fig. (b)
Figure-1.7
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Properties of Continuous Time Unit Impulse Function

(i) Scaling property:

S(at) = |;—|8(t)

Proof:
y

|l

Sat) = —8()

Integrating above equation on both the sides with respectto ‘'t

+oo Foo 1
[8anat = | o0
Let at=1

Signals and Systems
Introduction to Signals 5

'a'is a constant, postive or negative

a-dt= gt ; ‘a is a constant, positive or negative

or lal - dt= &

+oo
Now, j S(at)dt

By definition,

Il
—
[*4
~
A
g
a
Il
-

T s(nat

j"fg _ Important Expressions

e Satth) - ia(rig)

El

- (1) is an even function of time.

(ii) Product property/multiplication property:
x(1)d(t - t,) = x(t,)0(t —t5)

Proof:

i ar T
La(r)ﬂ - LHS(t)-dz‘

The function 8(t - 1) exists only at t =t . Let the signal x(f) be continuous at t = t .

(1) 8(t- 1) = x(Bf_, -8(t=1t,)
= x(t) 8(t-t)

Therefore,

j/\fg ~ Important Expressions

o x(1)&(t) = x(0) 8(t)

(iii) Sampling property:

T x(t)8(t —t,)dt = x(t,)

—oo
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Proof :
Using product property of impulse function
x(t) 8(t— 1) = x(t,) 8(t— 1))
Integrating above equation on both the sides with respectto ‘'t

Tx(t) S(t—t,)dt Tx(t) S(t—-t,)dt

—oo —oo

) fa(r—to)dt =x(t)

—oo

(5%

j'\f Important Expressions

OO

—oo

(iv) The first derivative of unit step function results in unit impulse function.
d
&8(t) = —u(t
() v

Proof :
Let the signal x(f) be continuous att = 0.

+oo
Consider the integral j %[u(t)] x()at

—oo —oo

Il
<
=

=
<
—
8 8

|
—
><\
=

j
=

Q

~

=

We know from sampling property  x(0) = J' x(t) &(t) dt (i)
From equations (i) and (ii), we get B

]di = Tx(t)S(t) it
On comparing, we get &(t) = %u(t)

(v) Derivative property:

t
ng(t)a”(t —t,)dt = (—1)”x”(t)‘t t -ty <ty <ty and suffix n means n' derivative
=1l

ty

m Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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Proof:
Let the signal x(t) be continuous at t = {, where t, < t,< t,.

Consider the derivative %[x(t) 8(t—tp)] = (O (E—1tp)+x'(t)d(t—1p)
Integrating above equation on both the sides with respect to ‘t’.

t d ta ta

| [ 208t~ to)at + [ x'(8) 8(t — to)alt

t t t

=
—~
~
~
%
—~
~
|
~
o
~
—_
Q
~
I

t to
[ 208t = to)att + [ (1) 8(t - to)alt

[1 [1

[+(0) 8t to)]?

to to
[x(to) 8(tp — to) — x(ty) 8(ty = to)] = [ x(t) 8'(t = to)dlt + [ x'(t) 8(t — to)alt
2 2
Here, &(t, -t,) =0andd(f,-t,) =0 because t,# t, or t, # t,

ta

f
[ x(0) 8°(t = to)dlt + [ x(1)8(t ~ to)clt

So, 0 =
2 2
to to
fx(t) Ot —ty)dt = (—1)Ix'(f)5(f—fo)df (.- using sampling property)
4 t
= = (-1)x(t,)
ty
Hence, [2) 8t -to)at = (1)1 x(t,)

4]
If same procedure is repeated for second derivative, we get
ta
_fx(z‘) §"(t—ty)dt = (—1)2x"(t,)
]
On generalising aforementioned results, we get
t
[x(0)87(t - to)dt = (~1)"x"(t,)

4]

(vi) Shifting Property:
According to shifting property, any signal can be produced as combination of weighted and shifted
impulses.
oo
x(t)= [ x(t) 8(t - 1) dr

Proof:
Using product property

x(t) 8(t—ty) = x(t;) 8(t—t,)
Replacing t, by T

x(1) 8(t—1) = x(t) 8(t-71)

( www.madeeasypublications.org MBDE ERSH Theory with Solved Examples m
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Integrating above equation on both the sides with respect to ‘1’.

Tx(l‘) 8(t—-1)dt = Tx(r) S(t—T)dt

—oo —oo

T Tx(r) S(t—1)dt

—oo —oo

=
PN
=
=
—_—
>
=
—
I
A
g
a
Il

x(t) -1 = j:ox(r) S(t—r)dr

—oo

x(f) = Tx('c) 8(t—T)dt

(vii) The derivative of impulse function is known as doublet function.
d
&'(t) = =3(t
(1) T (1)

Graphically,
§(t)

Figure-1.8
Area under the doubletfunction is always zero.

Discrete-Time Case
The discrete time unit impulse function §[n], also called unit sample sequence or delta sequence is
defined as

Sl = 1, n=0 |
0, otherwise

~1
To

Figure-1.9

c 3 2

1 2 3 ---n

It is also known as Kronecker delta.

Properties of Discrete Time Unit Impulse Sequence

(i) Scaling property:
8[kn]=9d[n]; k is an integer

m Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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Proof:
By definition of unit impulse sequence

1, =0
8n] = { n
0, n=#0
Similarly, d[kn] = {; in:(())
. kn#
1, n=9=0
_ k
0, n¢9¢o
1, =0
RN
0, n#0

(ii) Product property:
x[n]8[n = ng] = x[ng]8[n — no]

From definition,

-l 00

We see that impulse has a non zero value only at n= n,

Therefore, x[n]8[n—ny] = x{n] 8[n—ny]

n=np

x[n] 8[n—n,] = x[n,] 8[n—n,]

(iii) Shifting property:

+oo

Anl= Y «KI8[n - K]

k=—-o

Proof:
From product property
x[n]8[n—ny] = x[ny] 8[n—n,]
Replacing n, by ‘K
x[n] 8[n— k] = x[Kk] 8[n— K]

+oo

- f Anldin-kl= Y, xk18[n—kK]
k= —co k=—c
= A S Sk = 3 KISk

k= —eo k= —co

=3 x[n]-1

T k)8l Al

oo

k

x[n] = i x[k]8[n — K]
Kk=—

oo

Signals and Systems
Introduction to Signals 9
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(iv) The first difference of unit step sequence results in unit impulse sequence.
d[n]=u[n] - uln -1]

Proof:
By definition of unit step sequence

unl = Y, 8ln-k] (i)
k=0
= §[n]+ Y, 8[n—kK]
k=1
But, un-1= Y 8ln-kl
k=1
un] = 8[n] + uln-1
We get, d[n] = u[n]—un-1
Graphically we can see,
uln]
1]
@) 0123 -
uln —1]

i
—
—
—
—

(b)

© ——eet e

Figure-1.10
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S.No. | Properties of CT unit Impulse Function

Properties of DT unitimpulse sequence

o, t=

1. S(t):{

and | &(t)dt =1
0, otherwise _'!; ()

1, ifn=0;
dn]= _
0, otherwise

2. x(t) Ot —to) = x(to) &(t —1ty)

AN &8n —k] = x[k1§[n — K]

3. &t):%u(t)

n] =u[n] —u[n —1]

4, TS(t —1)dt=u(t)
0

> 8in— K= uln]
k=0

=

5. | x(t)= jx(r)é;(t —1)dt

—oo

nl= ix[k] qn —K]

=

6. jx(t)a(t —ty)dt =x(ty)

oo

2 x[n]8[n — ny] = x[n,]

&at)=ﬁ&t)
dkn] =gn]
1 b
7. dat+b)=—23|t+—
|al ( a)
8-n] =3n]
3(-t)=8(t)
t 0), t <ttt
8. fx(t)a(t)dtz{x( b h<t<t
4 0, otherwise
ty
. jx(t)a" (t —to)dt =(=1)" x"(t,), t; <ty <t
. i
where suffix n mean n' derivative
iy 9
10. S(t)_dtS(t)

The Dirac delta function 8(t) is defined as

1; t=0
(2) 3(1) = {O ; otherwise

1: t=0 N
(©) 3(t) = {0; otherwise J;

Solution :(d)

(b) 5(t) - {0 ;

s(tyat=1 (d) 8(t)={g°f

w: t=0
otherwise

t=0 T
; otherwise and :|;8(t)dt =1

( www.madeeasypublications.org
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The integral _[ S(t —g)Gsin(t) dt evaluate to

(a) 6 (b) 3
(c) 1.5 (dy 0
Solution :(b)

Given signal is

x(t) = ].o S(t—%)Bsint dt

—oco

By shifting property of unit impulse function

to .
Ix(t)S(t —ty)dt {x(l‘o.), fh<ty<b
t 0: elsewhere

__[06(1‘ —%stin(t) ar = 6- sin%

= 6><l:3
2
1500+ [ et~ ) =80+ (0, (0 s
(a) u(t) (b) &(t)
(c) (1) (d) 1
Solution :(b)
Let W) = &)

W)+ [T @ at-ndr = 8(0)+ [ 8@ (t-1)en

Il
[*4
—~
~
~

+

=
—~
~
~

So, y(t) = d(t) satisfies the given equation.

Which of the following is NOT a property of impulse function?

(a) x(t) 8(t-t) = x(t,) 8(t-t) (b) x(t) * 8(t—t) = x(t-t))
to +oo n

(c) fx(t)6(t —t,) dt =x(t,) ; ty<t<t, (d) j x(t) 8"(t —ty) dt = (=1)" gt” x(t)
ty oo

Solution :(d)
By derivative property

[+8 -t = (-9

e t=ty

t=tg

m Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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— Q.5 An LTI system has the input signal x[n]. The
Student's correct se [
@ X quence of operation to get output
Assignments sn] =xn-ML: M> 1, L>1is
(a) Interpolation by L, Delay by M, Decimation
Objective Questions by L
(b) Delay by M, Interpolation by L, Decimation
Q.1 Which one of the following relations is not correct? oy M . ,
(c) Decimation by L, Delay by M, Interpolation
(a) ft)8(t) = A0)8(1) (b) [ (t)8(x) dr =1 oy L
e (d) Interpolation by L, Decimation by L, Delay
~ by M
() _j 8(r) d(r) =1 (d) A1) 8(t-1) = (1) 8(t-1) Q.6 Two signals x(t) and y(t) are shown below.
Q.2 The odd component of the signal x(t) = et costis x(t)
(@) cosh(2t)cost (b) —sinh (2t) cos t
(c) —cosh(2t)cos t (d) sinh(2t) cos t B
Q.3 Thevalue of 0 2 !
2
[ [t -3)8(2t +2) + 8cosnt §'(t - 0.5)]dt is 1G]
-2
(@) 23.13 (b) 13.56 ] 5
(c) 6.39 (d) 7.85 \// t
Q.4 Function x(t) is shown in the figure. L1
x(t)
then x(t) in terms of y(t) can be written as
1
t-5 t+5
5 t (@) x( 3 ) (b) —X( 3 )
- t-5
© _x(—(r+5)) ) _x(—(s— ))
The x(f) in terms of unit step function is 3
and the odd part of unit step function
is respectively. Q.7 Fundamental frequency of periodic signal e/®"
1 , is given as
(@) 2u(t) + 1; Esgn( ) (where m is integer and N is the period of the
y signal)
b) 2u(t) - 1; —sgn(t
(b) 2u(1) - 1; 5591 N o
(@ mi 5= (b) N|—
1 2n m
(c) 2u(t) -1, >
1 (c) m(z—nj (d) None of these
(d) 2u(-t)-1; = N
2
( www.madeeasypublications.org MBDE ERSH Theory with Solved Examplesm
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Q.8 A discrete time system is given as:

x[n] = cos(ﬁj -sin(n—n)
4 4

The signal is
(a) periodic with 8
(c) periodic with 4

(b) periodic with8(m + 1)
(d) non-periodic

Numerical Questions

Q.9 The power of signalx[n] = (-1)"u[n]is W.

Q.10 A discrete time signal is given as

x[n] = COS(%HJ “(uln=uln-86])

The energy of the signal is J.

Q.11 Two functions x[n] and y[n] are shown in following
figures.

x[n]

L

-4 -3-2-1 (01

~ n-ny .
|fy[n]—ocx[ P }thenvalueofno+oc+kls

Answers :

1. (b) 2. (b) 3. (@ 4. (b)
5. (@ 6. (d) 7. (0 8. (d)
9. (0.5) 10. (3) 11. (4.5)

2023

MEBDE ERSYH

Student's
Assignments

' 2

Q.1 With sketches of waveforms, explain the four
class of signals.

Q.2 For the non-recurring waveform shown below,
express v(t) interms of steps, ramps and related
functions as needed.

v(t)

t
0 2

Ans. [v(t) = 2u(t) —r (1) + r (t-2)]

Q.3 Showthat,

0 [ swe =1

—oco

(i) TS(I _ 2)oos(%t) at=0

—oco

+oo
(iii) j 2 =082 — f)dt = g2 =2

Q.4 Calculate the energy of following signal

t
y(t) = [ [8(x+2)-8(t-2)]dt
Q.5 Prove that shifting a signal does not affect its
energy.
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