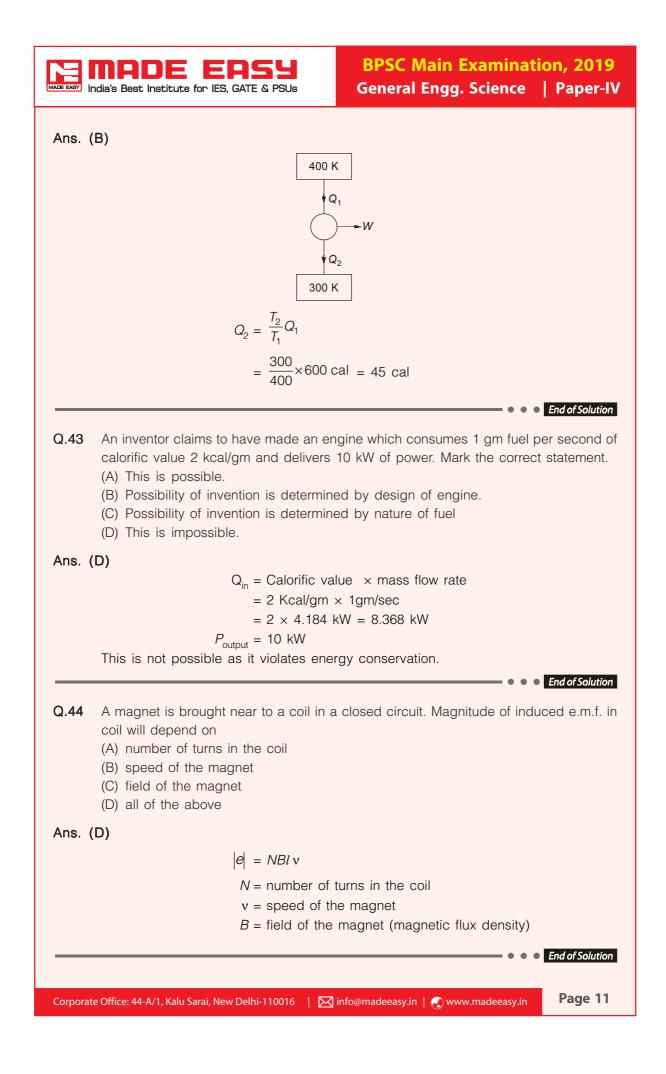
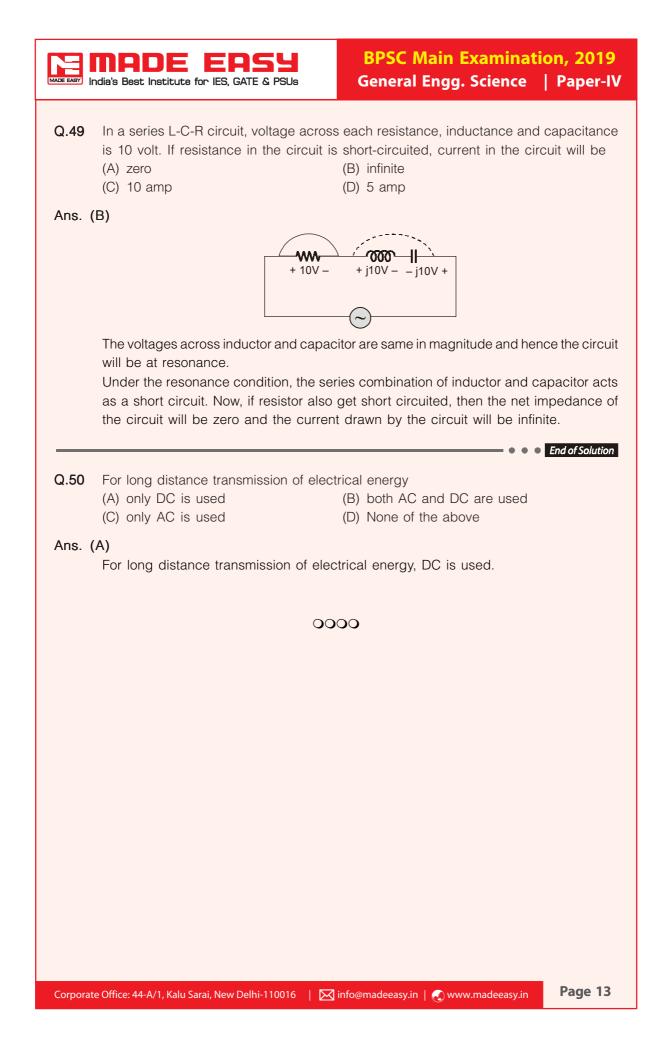


	India's Best Institute for IES, GATE & PSUs	BPSC Main Examination, 2019 General Engg. Science Paper-IV
Q.6	Streamline flow is more likely for liqui (A) high density (C) low viscosity	ds with (B) high viscosity (D) none of the above
Ans.	(B)	
Q.7	Bernoulli's theorem concludes that (A) velocity is less where pressure is (B) fluid is viscous and compressible (C) fluid is rotational (D) viscosity of liquid is independent	
Ans.	(A)	
Q.8	Orifice means (A) a small hole through which fluid c (B) a big hole through which fluid cor (C) disorderly flow of fluid (D) pressure due to column of liquid	
Ans.	(A) Orifice means a small hole through w	which fluid comes out.
Q.9	When two metal rods of same length k_2 are connected in series, the effect	and same cross-section of conductivity k ₁ and ive conductivity is
	(A) $k = \frac{k_1 + k_2}{2}$	(B) $k = k_1 + k_2$
	(C) $\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2}$	(D) $\frac{2}{k} = \frac{1}{k_1} + \frac{1}{k_2}$
Ans.		cross-section A and conductivity k can be given
	$R = \frac{l}{kA}$	
Corpor	ate Office: 44-A/1, Kalu Sarai, New Delhi-110016 \mid 🔀	info@madeeasy.in 🜏 www.madeeasy.in Page 3

	MADE EASY ndia's Best Institute for IES, GATE & PSUs	BPSC Main Examination, 2019 General Engg. Science Paper-IV
Q.14	In plane survey, width of a river can b (A) total station (C) theodolite	e measured with (B) dumpy level (D) clinometer
Ans. ((C)	
Q.15	Area of a map can be measured by (A) total station (C) chain survey	 (B) plane table survey (D) planimeter
Ans. ((D) Planimeter is used to measure the are	·
Q.16	The function of sand in concrete is (A) to reduce shrinkage (B) to in-promote cement hydration (C) to prevent efflorescence (D) none of the above	• • End of Solution
Ans. (provide the bulk and avoid shrinkage.
Q.17	Advantage of cast iron over mild stee (A) it has higher ductility (B) it has relatively low melting point (C) it has higher tensile strength (D) it is more malleable	
Ans. ((C) Cast iron having more tensile strength	as compare to mild steel.
Q.18	Pelton wheel extracts energy from (A) dead weight of water (B) axial and radial flow of water (C) diesel generator (D) impulse of moving water	• • End of Solution
Ans. ((D)	turbine. Which extract energy from impulse of
Corporat	te Office: 44-A/1, Kalu Sarai, New Delhi-110016 \mid 🖂	••• End of Solution info@madeeasy.in @www.madeeasy.in Page 5


	India's Best Institute for IES, GATE & PSUs	BPSC Main Examination, 2019 General Engg. Science Paper-IV
Q.19	Chemicals used to protect timber from (A) timber preservatives (C) knots	fungi and insects are called (B) timber seasoning (D) none of the above
Ans.	(A)	
Q.20	Compressive strength of 2 nd class brid (A) 105 kg/cm ² (C) 35 kg/cm ²	 End of Solution End of Solution (B) 70 kg/cm² (D) 125 kg/cm²
Ans.	(B)	
Q.21	The function of thinner in paint is (A) it provides desired consistency (B) it provides adhesion and integrity (C) it provides colors (D) it makes the surface tough after d	rying
Ans.		ovide the desired consistency to the paint, so s easily.
Q.22	Which of the following is not responsib (A) Turbidity (C) Sodium	ble for water pollution? (B) Temperature (D) Chlorine
Ans.		dverse effects if present in excess. Hence they not responsible for water pollution.
Q.23	Ultimate strain of mild steel rods is (A) less than TMT rods (C) equal to that of TMT rods	(B) more than TMT rods(D) none of the above
Ans.	(B)	
		• • • End of Solution

	India's Best Institute for IES, GATE & PSUs	General Engg. Science Paper-
Q.24	Critical path is in CPM (A) cannot be compressed further (B) is the shortest path (C) is the longest path (D) none of the above	
Ans.	(C) Critical path in CPM is the longest	path hence option (C) is correct.
Q.25	In PERT, if the length of two paths an of	e equal, then critical path is decided on the bas
	(A) standard deviation(C) early finish time calculation	(B) early start time calculation(D) total float
Q.26	of variance which is directly related Variance = (Standar A particle starts moving from rest ur <i>x</i> in first 10 seconds and a distance	rd deviation) ² ••• <i>End of Solution</i>
	(A) $y = x$ (C) $y = 3x$	(B) $y = 2x$ (D) $y = 4x$
Ans.	(C) For a particle moving under a const	ant acceleration.
	$s = ut + \frac{1}{2}a^{t}$	t ²
	For 0 - 10 seconds, $s_{0 - 10} = 0 + \frac{1}{2} \times ax$	×10 ²
	$\Rightarrow \qquad x = 50a$ For 0 – 20 seconds	(`
	$s_{0-20} = 0 + \frac{1}{2} \times ax$	× 20 ²
	$\Rightarrow \qquad x + y = 200a$	(;
	\Rightarrow $y = 150a$	
	$\Rightarrow \qquad y = 150a$ from eq. (1) and (2) y = 3x	


	India's Best Institute for IES, GATE & PSUs	BPSC Main Examination, 20 General Engg. Science Pape	
Q.27	respectively are (A) 0° and 90°	ake their resultant a minimum and a maxi (B) 180° and 90°	mum
	(C) 90° and 180°	(D) 180° and 0°	
Ans. (be acting opposite direction i.e. 180° an acting in same direction i.e. 0°.	
Q.28		s k ₁ and k ₂ (k ₁ > k ₂). When both the spring gth, the work done in these springs will be (B) greater for k ₁ (D) none of the above	s are
Ans. ((B) As $k_1 > k_2$, work done in k_1 spring v		
		• • End of So	
Q.29	An engine develops 10 kW of powe 200 kg to a height of 40 m? (Take g (A) 4 seconds (C) 8 seconds	er. How much time will it take to lift a mas g = 10 m/s ²) (B) 5 seconds (D) 10 seconds	SS O
Q.29 Ans. (200 kg to a height of 40 m? (Take g (A) 4 seconds (C) 8 seconds (C) Given: Power = 10 kW; $g = 10$ m/s ² Power = $\frac{Work}{time}$	g = 10 m/s ²) (B) 5 seconds (D) 10 seconds	SS O
	200 kg to a height of 40 m? (Take g (A) 4 seconds (C) 8 seconds (C) Given: Power = 10 kW; $g = 10$ m/s ² Power = $\frac{Work}{time}$	g = 10 m/s ²) (B) 5 seconds (D) 10 seconds ; M = 200 kg; h = 40 m	
	200 kg to a height of 40 m? (Take g (A) 4 seconds (C) 8 seconds (C) Given: Power = 10 kW; $g = 10$ m/s ² Power = $\frac{Work}{time}$	$g = 10 \text{ m/s}^{2}$ (B) 5 seconds (D) 10 seconds $f; M = 200 \text{ kg}; h = 40 \text{ m}$ $\frac{0 \times 10 \times 40}{10000} = 8 \text{ seconds}$ e • • • End of So idulum is maximum when it is (B) at the equilibrium	
Ans. (200 kg to a height of 40 m? (Take g (A) 4 seconds (C) 8 seconds (C) Given: Power = 10 kW; $g = 10 \text{ m/s}^2$ $Power = \frac{Work}{time}$ $time = \frac{Mgh}{P} = \frac{20}{P}$ The potential energy of a simple per (A) at the turning points of oscillation (C) in between above two cases (A)	$g = 10 \text{ m/s}^{2}$ (B) 5 seconds (D) 10 seconds $T; M = 200 \text{ kg}; h = 40 \text{ m}$ $\frac{0 \times 10 \times 40}{10000} = 8 \text{ seconds}$ Idulum is maximum when it is (B) at the equilibrium (D) it has always a fixed value Ins constant, at turning point velocity of pend y is maximum at these points.	lution
Ans. (Q.30 Ans. (Q.31	200 kg to a height of 40 m? (Take g (A) 4 seconds (C) 8 seconds (C) Given: Power = 10 kW; $g = 10 \text{ m/s}^2$ $Power = \frac{Work}{time}$ $time = \frac{Mgh}{P} = \frac{20}{P}$ The potential energy of a simple per (A) at the turning points of oscillation (C) in between above two cases (A) Total energy of simple pendulum rema becomes zero hence potential energy Which of the following is not a unit of (A) N/m ² (C) dyne/cm ²	$g = 10 \text{ m/s}^{2}$ (B) 5 seconds (D) 10 seconds $T; M = 200 \text{ kg}; h = 40 \text{ m}$ $\frac{0 \times 10 \times 40}{10000} = 8 \text{ seconds}$ (dulum is maximum when it is (B) at the equilibrium (D) it has always a fixed value (D) it has always a fixed value	lution
Ans. (Q.30 Ans. (200 kg to a height of 40 m? (Take g (A) 4 seconds (C) 8 seconds (C) Given: Power = 10 kW; $g = 10 \text{ m/s}^2$ $Power = \frac{Work}{time}$ $time = \frac{Mgh}{P} = \frac{20}{P}$ The potential energy of a simple per (A) at the turning points of oscillation (C) in between above two cases (A) Total energy of simple pendulum rema becomes zero hence potential energy Which of the following is not a unit of (A) N/m ² (C) dyne/cm ²	$g = 10 \text{ m/s}^{2}$ (B) 5 seconds (D) 10 seconds $f; M = 200 \text{ kg}; h = 40 \text{ m}$ $\frac{0 \times 10 \times 40}{10000} = 8 \text{ seconds}$ (dulum is maximum when it is (B) at the equilibrium (D) it has always a fixed value (D) it has always a fixed value (D) it has always a fixed value (D) it maximum at these points. (B) megapascal (D) N/m	lution
Ans. (Q.30 Ans. (Q.31	200 kg to a height of 40 m? (Take g (A) 4 seconds (C) 8 seconds (C) Given: Power = 10 kW; $g = 10 \text{ m/s}^2$ $Power = \frac{Work}{time}$ $time = \frac{Mgh}{P} = \frac{20}{P}$ The potential energy of a simple per (A) at the turning points of oscillation (C) in between above two cases (A) Total energy of simple pendulum rema becomes zero hence potential energy Which of the following is not a unit of (A) N/m ² (C) dyne/cm ²	$g = 10 \text{ m/s}^{2}$ (B) 5 seconds (D) 10 seconds (D) 10 seconds (End of So (D) 10 seconds (End of So (D) it has always a fixed value (D) it has al	lution

	MADE EASY ndia's Best Institute for IES, GATE & PSUs	BPSC Main Examination, 2019 General Engg. Science Paper-IV
Q.32	Energy per unit volume in a stretched (A) 1/2 load × strain (C) stress × strain	wire is (B) load × strain (D) 1/2 stress × strain
Ans. (D)	
Q.33		• • • End of Solution ever have equal lengths. Both are subjected to num bending stress in cantilever is (given El are
	(A) equal to that in simply supported(C) less than simply supported	
Ans. (ever will be more than what will be in simply as will be more in cantilever.
Q.34	Which section will be subjected to uns (A) Channel section (C) Circular section	
Ans. (A)	
Q.35	A cantilever is loaded with a concentra the centre of the beam will be (A) P (C) zero	 • • • End of Solution ated load P at the free end. The shear force at (B) P/2 (D) none of the above
Ans. (A)	
	A	Р В
	SFD A	B
Q.36	In case of column, critical or Euler's buc (A) maximum force (C) average force	 End of Solution End of Solution ckling load at which buckled mode is possible is (B) least force (D) shear force
Ans. (B)	
		• • End of Solution
Corporat	e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🏻 📔 🔀	info@madeeasy.in 🕢 www.madeeasy.in Page 9

	India's Best Institute for IES, GATE & PSUs	BPSC Main Examination, 2019 General Engg. Science Paper-IV
Q.37	The phenomenon of decreased resista (A) toughness (C) fatigue	ance of a material to repeated stresses is called (B) stress concentration (D) endurance limit
Ans.	(C)	• • End of Solution
Q.38	Universal testing machine is used to ((A) compressive strength (C) shear strength	
Ans.	(D)	
Q.39	Portland Pozzolana cement when com 28 days	• • End of Solution
	(A) more compressive strength(C) equal compressive strength	(B) less compressive strength(D) none of the above
Ans.	Portland Pozzolanna cement develops its	s strength at slower rate and hence its compressive give less compressive strength compared to vs.
Q.40	For adiabatic change in gas (A) $TV^{\gamma-1}$ = constant (C) $TV^{\gamma+1}$ = constant	(B) $TV^{\gamma-2}$ = constant (D) TV^{-1} = constant
Ans.	(A)	
Q.41	Air in a cylinder is suddenly compress same position. With the passage of the (A) pressure increases (B) pressure decreases (C) pressure remains the same (D) pressure may increase or decrease	
Ans.	(B)	
Q.42	A Carnot engine operates between 12 from the source per cycle, quantity of (A) 25 cal (C) 50 cal	 End of Solution and 27°C. If the engine receives 60 cal heat heat rejected per cycle is (B) 45 cal (D) 55 cal
Corpora	ate Office: 44-A/1, Kalu Sarai, New Delhi-110016 \mid 🔀	info@madeeasy.in 🕢 www.madeeasy.in Page 10

e inductive reactance of an inductor peak value of AC RMS value of AC ductive reactance, $X_L = 2\pi f L$ f = frequency an AC circuit having pure resistanc	r in an AC circuit depends on (B) frequency of AC (D) None of the above of the AC signal
$X_{L} = 2\pi f L$ f = frequency of	
an AC circuit having pure resistanc	
current lags the voltage current leads the voltage current and voltage are in phase none of the above	
a pure resistive circuit, the current	
bacitor total reactance of circuit is zero inductive reactance is zero capacitative reactance is zero	• • End of Solution
resonance, the total reactance of a	
pedance Z of the combination is 20 ohm	 • • End of Solution n AC source at resonance, if R = 20 ohm, then (B) zero (D) 400 ohm
of the circuit will be equal to its re	e circuit will be zero and hence the impedance esistance (<i>R</i>).
	none of the above a pure resistive circuit, the current condition of resonance of an AC of pacitor total reactance of circuit is zero inductive reactance is zero capacitative reactance is zero none of the above resonance, the total reactance of a a series combination of R, L, C to an pedance Z of the combination is 20 ohm 10 ohm

