

WORKDOOK 2026

Detailed Explanations of Try Yourself *Questions*

Mechanical EngineeringInternal Combustion Engines

1

Air Standard Cycle

Detailed Explanation of

Try Yourself Questions

T1: Solution

Given: Compression ratio,
$$r = \frac{V_1}{V_2} = 17$$

$$\frac{C_P}{C_V} = \gamma = 1.4$$

or
$$V_3 - V_2 = 0.1 (V_1 - V_2)$$

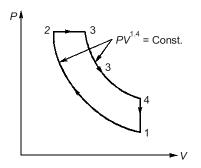
or
$$\frac{V_3}{V_2} - 1 = 0.1 \left(\frac{V_1}{V_2} - 1 \right)$$

or Cut-off ratio,
$$\rho = \frac{V_3}{V_2} = 0.1 \times 16 + 1 = 2.6$$

$$\eta_{\text{Diesel}} = 1 - \frac{1}{r^{\gamma - 1}} \left[\frac{r_c^{\gamma} - 1}{\gamma(r_c - 1)} \right]$$

Where r_c is cut-off ratio and r is compression ratio

$$= 1 - \frac{1}{17^{0.4}} \left[\frac{2.6^{1.4} - 1}{1.4(2.6 - 1)} \right] = 1 - \frac{1}{17^{0.4}} \left(\frac{3.81 - 1}{1.4 \times 1.6} \right)$$
$$= 0.596 \text{ or } 59.6\%$$


Considering the engine to be spark ignition engine;

Stroke length, l = 250 mm = 0.25 mBore dia: d = 200 mm = 0.2 m

Clearance volume, $V_c = 0.001 \,\mathrm{m}^3$

 $\gamma = 1.4$

Displacement volume, $V_s = \frac{\pi}{4}d^2 \times l = \frac{3.14}{4} \times (2)^2 \times 0.25$

Total volume in the cylinder,
$$V_1 = V_c + V_s = 0.001 + 7.85 \times 10^{-3} \\ = 8.85 \times 10^{-3} \, \mathrm{m}^3$$

Compression ratio,
$$r = \frac{V_1}{V_C} = \frac{8.85 \times 10^{-3}}{0.001} = 8.85$$

.. Air-standard cycle efficiency,
$$\eta = 1 - \frac{1}{r^{\gamma - 1}} = 1 - \frac{1}{(8.85)^{1.4 - 1}}$$
$$= 1 - \frac{1}{8.85^{0.4}} = 0.5819 \approx 58.2\%$$

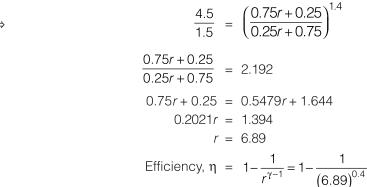
T3: Solution

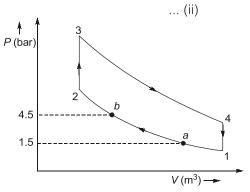
$$V_a = V_2 + 0.75 (V_1 - V_2) = 0.75 V_1 + 0.25 V_2$$

$$V_b = V_2 + 0.25 (V_1 - V_2) = 0.25 V_1 + 0.75 V_2$$

$$\vdots$$

$$\frac{V_a}{V_2} = 0.75 r + 0.25 \qquad \dots (i)$$

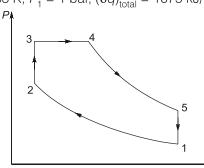

$$\frac{V_b}{V_2} = 0.25r + 0.75$$


$$\frac{V_a}{V_b} = \frac{0.75r + 0.25}{0.25r + 0.75}$$

Also, Compression process follows $PV^{1.4} = C$

$$\frac{P_b}{P_a} = \left(\frac{V_a}{V_b}\right)^{1.4}$$

$$\Rightarrow \frac{4.5}{1.5} = \left(\frac{0.75r + 0.25}{0.25r + 0.75}\right)^{1.4}$$



= 0.5381 = 53.81%

T4: Solution

Given: r = 13, $T_1 = 90$ °C = 363 K, $P_1 = 1$ bar, $(\delta q)_{total} = 1675$ kJ/kg, $\gamma = 1.4$, R = 0.287 kJ/kg-K

$$C_V = \frac{R}{\gamma - 1} = \frac{0.287}{0.4} = 0.718 \text{ kJ/kg-K}$$

$$C_P = \frac{\gamma R}{\gamma - 1} = \frac{1.4 \times 0.287}{0.4} = 1.005 \text{ kJ/kg-K}$$

$$\frac{T_2}{T_1} = (r)^{\gamma - 1}$$

$$T_2 = 363 \times (13)^{0.4} = 1012.71 \text{ K}$$

$$(\delta q)_V = C_V (T_3 - T_2) = \frac{1675}{2} = 837.5$$

$$\Rightarrow$$
 0.718 (T_3 - 1012.71) = 837.5

$$T_3 = 2179.14 \,\mathrm{K}$$

$$(\delta q)_P = C_P (T_4 - T_3) = 837.5$$

= 1.005 (T4 - 2179.14) = 837.5

$$= 1.005 (T4 - 2179.14) = 8$$

$$T_4 = 3012.47 \,\mathrm{K}$$

 $T_4 = 3012.47 \,\mathrm{K}$ Maximum temperature, $T_4 = 3012.47 \,\mathrm{K}$ $(V_4 - V_3) = \% p \,(r - 1)$ So,

(ii)
$$(V_4 - V_3) = \%p(r-1)$$

$$\Rightarrow \qquad \left(\frac{V_4}{V_3} - 1\right) = \frac{p}{100}(13 - 1)$$

$$\left(\frac{T_4}{T_3} - 1\right) = \frac{p}{100}(13 - 1)$$

[: Process 3-4 is isobaric]

$$\Rightarrow \frac{3012.47}{2179.14} - 1 = \frac{p}{100} \times 12$$

$$\Rightarrow$$
 $p = 3.186\%$

So, percentage of the stroke at which cut-off occurs is 3.186%.

2

Combustion & Knocking in SI and CI Engines

Detailed Explanation

of

Try Yourself Questions

T1: Solution

Mechanical efficiency = η_{m} = 90% = 0.9

Motor efficiency = η_{motor} = 0.75

Frictional power = $FP = 4 \times 0.75 = 3 \text{ kW}$

$$\therefore \qquad \eta_m = \frac{BP}{IP} = \frac{BP}{BP + FP}$$

$$\Rightarrow \qquad 0.9 = \frac{BP}{BP + 3}$$

$$\Rightarrow$$
 BP \times 0.9 + 0.9 \times 3 = BP

$$\Rightarrow$$
 BP = 27 kW

Also,
$$BP = T \times \omega$$

$$\Rightarrow 27 = T \times 2\pi \times \frac{1000}{60}$$

$$\Rightarrow$$
 $T = 0.25783 \text{ kNm} = 257.83 \text{ Nm}$

Mass on dynamometer = $m \log x$

Drum diameter = 1 m

Drum radius $= 0.5 \, \text{m}$

$$T = m \times g \times r$$

$$\Rightarrow$$
 257.83 = $m \times 9.81 \times 0.5$

$$\Rightarrow$$
 $m = 52.56 \text{ kg}$

